

Welcome to Certgrinder 0.18.0-dev Documentation!

Contents:

	Introduction

	Advantages

	Terminology

	Challenges
	DNS-01

	HTTP-01

	Certgrinderd
	Install Certgrinder Server

	Create User

	Install certgrinderd

	Configuration

	Restricting Client Hostnames

	Configure SSH Access

	Auth and Cleanup Hooks

	Testing

	Command Line Usage

	Class Methods

	Certgrinder
	Installation

	Client Commands

	Command Line Usage

	Class Methods

	Certgrinderd Change Log
	v0.18.0 (unreleased)

	v0.17.2 (27-nov-2021)

	v0.17.1 (21-nov-2021)

	v0.17.0 (21-may-2021)

	v0.17.0-rc3 (21-may-2021)

	v0.17.0-rc2 (20-may-2021)

	v0.17.0-rc1 (20-may-2021)

	v0.16.0 (18-Jan-2021)

	v0.15.1 (29-Sep-2020)

	v0.15.0 (29-Sep-2020)

	v0.15.0-beta2 (28-Sep-2020)

	v0.15.0-beta1 (28-Sep-2020)

	v0.14.2 (13-Sep-2020)

	v0.14.1 (13-Sep-2020)

	v0.14.0 (29-Aug-2020)

	v0.14.0-beta2 (29-Aug-2020)

	v0.14.0-beta1 (29-Aug-2020)

	v0.13.2 (11-Jul-2020)

	v0.13.1 (7-Jul-2020)

	v0.13.0 (7-Jul-2020)

	v0.13.0-rc1 (1-Jul-2020)

	v0.13.0-beta2 (29-Jun-2020)

	v0.13.0-beta1 (7-May-2020)

	v0.13.0-alpha8 (6-May-2020)

	v0.13.0-alpha7 (6-May-2020)

	v0.13.0-alpha6 (6-May-2020)

	v0.13.0-alpha5 (6-May-2020)

	v0.13.0-alpha4 (5-May-2020)

	v0.13.0-alpha3 (5-May-2020)

	v0.13.0-alpha2 (4-May-2020)

	v0.13.0-alpha (4-May-2020)

	Certgrinder Change Log
	v0.18.0 (unreleased)

	v0.17.2 (27-nov-2021)

	v0.17.1 (21-nov-2021)

	v0.17.0 (21-may-2021)

	v0.17.0-rc3 (21-may-2021)

	v0.17.0-rc2 (20-may-2021)

	v0.17.0-rc1 (20-may-2021)

	v0.16.0 (18-Jan-2021)

	v0.15.1 (29-Sep-2020)

	v0.15.0 (29-Sep-2020)

	v0.15.0-beta2 (28-Sep-2020)

	v0.15.0-beta1 (28-Sep-2020)

	v0.14.2 (13-Sep-2020)

	v0.14.1 (13-Sep-2020)

	v0.14.0 (29-Aug-2020)

	v0.14.0-beta2 (29-Aug-2020)

	v0.14.0-beta1 (29-Aug-2020)

	v0.13.2 (11-Jul-2020)

	v0.13.1 (7-Jul-2020)

	v0.13.0 (7-Jul-2020)

	v0.13.0-rc1 (1-Jul-2020)

	v0.13.0-beta2 (29-Jun-2020)

	v0.13.0-beta1 (7-May-2020)

	v0.13.0-alpha8 (6-May-2020)

	v0.13.0-alpha7 (6-May-2020)

	v0.13.0-alpha6 (6-May-2020)

	v0.13.0-alpha5 (6-May-2020)

	v0.13.0-alpha4 (5-May-2020)

	v0.13.0-alpha3 (5-May-2020)

	v0.13.0-alpha2 (4-May-2020)

	v0.13.0-alpha (4-May-2020)

	v0.12.1 (4-Jan-2020)

	v0.12.0 (4-Jan-2020)

	v0.11.0 (25-Dec-2018)

	v0.10.2 (5-Apr-2018)

	v0.10.1 (2-Mar-2018)

	v0.10.0 (2-Mar-2018)

	v0.9.5 (16-Feb-2018)

	v0.9.4 (17-Jan-2018)

	v0.9.3 (17-Jan-2018)

	v0.9.2 (17-Jan-2018)

	v0.9.1 (17-Jan-2018)

	v0.9.0 (16-Jan-2018)

Introduction

Certgrinder is a client/server system written in Python to handle Letsencrypt certificate issuing on a central host (the Certgrinder server), rather than on the machines which need the certificates (the Certgrinder clients). This is accomplished by redirecting the LetsEncrypt challenges to the Certgrinder server. For DNS-01 challenges this is done with a CNAME record and for HTTP-01 challenges it is done with a HTTP 301 redirect.

To get a certificate the Certgrinder client calls the Certgrinder server (typically over SSH) with a CSR on stdin and (if all goes well) get a signed certificate in return on stdout.

Certgrinder support both RSA and ECDSA keys and certificates, and defaults to getting both kinds.

Advantages

	The approach with a central host serving all challenges simplifies getting certificates for stuff like loadbalanced or anycast services, where it can be impossible to predict which cluster node the LetsEncrypt challenge checker will hit when using HTTP-01.

	Using DNS-01 with a separate delegated zone dedicated to serve the challenges is safer than opening up dynamic updates of your primary zone(s) with your provider.

	Migrating services to new infrastructure becomes simpler because the new infrastructure can get real certificates before changing DNS to point to the new infrastructure.

	Certgrinder makes it trivial to get certificates for infrastructure behind firewalls or even on networks with no Internet connection. As long as the Certgrinder client can reach the Certgrinder server it is possible to use DNS-01 to issue certificates for the client.

	Certgrinder does not rotate the RSA/ECDSA keypair on each certificate renewal, which makes TLSA and similar public key pinning easy. The Certgrinder client can output and check such TLSA and SPKI pins for the keypairs it manages, as well as checking correctness of TLSA records in the DNS.

	Certgrinder supports fetching OCSP responses via the Certgrinder server. Having Certgrinder fetch the OCSP response makes it possible to configure OCSP stapling without relying on the various TLS servers own OCSP-fetching implementation. It also means that OCSP stapling can be done on servers behind strict firewalls or with no Internet connection, as the communication with CA is done via the Certgrinder server.

	Certgrinder supports alternate chain selection and understands the longer chain used by LetsEncrypt since May 2021.

Terminology

The central host with the LetsEncrypt signing stack is called the “Certgrinder server”. The individual servers (the ones that need the certificates) are called “Certgrinder clients”. These match the two Python packages certgrinderd and certgrinder, respectively.

Challenges

Certgrinder supports the two ACME challenge types DNS-01 and HTTP-01. Certgrinderd will try both challenge types (DNS-01 first, then HTTP-01), so your clients can use whatever is the best fit. Usually my webservers use HTTP-01 and everything else uses DNS-01. YMMV.

The following sections describes how Certgrinder handles these two challenge types.

DNS-01

With the DNS-01 challenge type the Certgrinder server serves the challenge over DNS, which means you need to run an authoritative DNS server on the Certgrinder server. You can also use an external DNS server or provider, as long as you can make a hook script to add and delete records from the Certgrinder server as needed.

To prepare the Certgrinder server for serving DNS-01 challenges you first need a zone to serve the challenges. Invent and delegate a new zone (like acme.example.com) to your Certgrinder server or DNS provider. Use an NS record to delegate, or follow your providers instructions. The zone name then needs to be configured in certgrinderd.conf. This zone will be used to serve all DNS-01 challenges, it will be updated automatically by certgrinderd as needed.

The default manual-auth-hook script is made for the bind DNS server. It creates and deletes the DNS record using nsupdate and an rndc.key file in the path /usr/local/etc/namedb/rndc.key. If you want to use other paths or another script for a local or external DNS provider you can configure it in certgrinderd.conf. The same goes for the cleanup script manual-cleanup-hook.

	Note:
	Since certbot is responsible for calling the hooks they are run as root, just like certbot.

This concludes the server part of the DNS-01 configuration.

A client wanting a certificate must now create a CNAME record called _acme-challenge.${DOMAIN} pointing at ${DOMAIN}.${ACMEZONE} for each domain in the CSR.

For example, to get a certificate for smtp.example.org you would create _acme-challenge.smtp.example.org CNAME smtp.example.org.acme.example.com if your acme challenge zone was acme.example.com. certgrinderd will create the smtp.example.org.acme.example.com TXT record containing the validation string, and delete it afterwards.

HTTP-01

With the HTTP-01 challenge type the Certgrinder server serves the challenge over HTTP, which means it needs a webserver somewhere to serve the challenges. It can be on the Certgrinder server or it can be an external webserver or provider, as long as you can make a hook script to add and delete files in the webroot from the Certgrinder server as needed. The hostname of this webserver will be the target of the Certgrinder clients HTTP redirects.

Each Certgrinder client then implements an HTTP redirect from /.well-known/acme-challenge/ to the Certgrinder server like so (nginx syntax):

location /.well-known/acme-challenge/ {
 return 301 http://acme.example.com$request_uri;
}

When requesting a certificate the Certgrinder server receives the challenge and path from Certbot (which in turn gets it from LetsEncrypt of course). The challenge is then passed to the manual-auth-hook script which writes it in the webroot under /.well-known/acme-challenge/.

In another datacenter somewhere LetsEncrypts challenge checker then loops over the domains in the CSR and does a HTTP request to each for /.well-known/acme-challenge/${path} and expects the response to contain the challenge.

Certgrinderd

The Certgrinder server certgrinderd takes care of getting certificates and OCSP responses on behalf of the calling clients. certgrinderd doesn’t run always like a daemon, so it never acts on its own. It only does something when a Certgrinder client runs it, usually over SSH.

The following sections explain the steps you need to setup a Certgrinder server.

Install Certgrinder Server

Create a VM or Jail or Docker thing or whatever somewhere. This will be your Certgrinder server. Give it a proper public hostname like certgrinder.example.com. You can use real proper IP addresses or port forwarding, whichever you prefer. The relevant ports are TCP/22 (so the Certgrinder clients can reach the Certgrinder server), TCP/53 and UDP/53 if you want to serve DNS-01 challenges locally, and TCP/80 if you use HTTP-01 challenges locally.

Create DNS records for the new hostname (A+AAAA, and an SSHFP record wouldn’t hurt) and you should be ready to begin the install.

The hostname of your Certgrinder server will be the hostname your Certgrinder clients use to SSH into (if you use SSH), and also the hostname you use to serve HTTP challenges locally (if you use HTTP-01 challenges).

Create User

Create a dedicated user to run the Certgrinder server, usually the username is just certgrinderd. The user needs sudo access to run the certbot binary, and to set a couple of environment variables. This works:

certgrinderd ALL=(ALL) NOPASSWD: /usr/local/bin/certbot
Defaults env_keep += "ACMEZONE WEBROOT"

Install certgrinderd

You can install certgrinderd from pip with pip install certgrinderd. It will pull in the dependencies it needs automatically. Create a venv for it if you don’t want to pollute the global Python env.

You can also checkout the Github repo and install the deps from requirements.txt by hand if you prefer. If you want to install with pip directly from Github the following may help:
pip install "git+https://github.com/tykling/certgrinder/#egg=certgrinderd&subdirectory=server"

The Certgrinder server needs to be reachable from the outside world on port 53/80 if you plan to serve DNS/HTTP challenges locally. It also needs to be accessible over SSH from all your Certgrinder clients if you plan to use SSH.

Configuration

Configuration of certgrinderd can be done using command-line options, or a configuration file, or a combination of the two.

The certgrinderd configuration file is in YAML format. An example config named certgrinderd.conf.dist can be found in the distribution. use --config-file or -f to specify the config file location.

Each config item can be specified either in the YAML config file as a key: value pair, or on the commandline as --key value - the latter overriding the former if both are present. For example, if the configfile has log-level: INFO and the command-line has log-level: DEBUG then the effective log-level would be DEBUG.

This is an alphabetical list of the configurable options:

	acme-email
	The email to use for the ACME account creation. Only required for the first run.

Default: None

	acme-server-url
	The URL for the ACME server.

Default: https://acme-v02.api.letsencrypt.org/directory

	acme-zone
	The DNS zone to pass to auth-hook script as environment variable ACMEZONE. Leave this unset to disable DNS-01 challenges.

Default: None

	auth-hook
	The script to run to prepare challenges before running Certbot.

Default: manual-auth-hook.sh

	certbot-command
	The Certbot command to run between the auth hook and the cleanup hook.

Default: /usr/local/bin/sudo /usr/local/bin/certbot

	certbot-config-dir
	The path to pass to Certbot as --config-dir.

Default: None

	certbot-logs-dir
	The path to pass to Certbot as --logs-dir.

Default: None

	certbot-work-dir
	The path to pass to Certbot as --logs-dir.

Default: None

	cleanup-hook
	The script to run to cleanup challenges after running Certbot.

Default: manual-cleanup-hook.sh

	config-file
	The path to the configuration file. The file is in YAML format.

Default: None

	debug
	Enables debug mode. This is the same as setting –log-level to DEBUG. Outputs lots info about the internal workings of certgrinderd.

Default: False

	log-level
	Sets the verbosity level for console and syslog logging. One of DEBUG, INFO, WARNING, ERROR, CRITICAL.

Default: INFO

	pid-dir
	The directory to place the certgrinderd PID file in.

Default: /tmp

	skip-acme-server-cert-verify
	Set to skip verification of the ACME servers TLS certificate. Used for testing, do not use in real world.

Default: False

	staging
	Enable staging mode. To make Certbot use the LetsEncrypt staging servers.

Default: False

	syslog-facility
	Set this and syslog-socket to enable logging to syslog. Must be a value supported by logging.handlers.SysLogHandler like LOG_USER or LOG_LOCAL0.

Default: None

	syslog-socket
	Set this and syslog-facility to enable logging to syslog.

Default: None

	temp-dir
	Set this to the directory to use for temporary files (CSR and certificates). Directory should be owned by the user running certgrinderd. A directory will be created and deleted inside this temp-dir for each run. Leave blank to create one automatically.

Default: None

	web-root
	The path to pass to the auth-hook script as environment variable WEBROOT. Leave this blank to disable HTTP-01 challenges.

Default: None

Finally the permitted domains for the current client must be specified as an environment variable (see next section).

Restricting Client Hostnames

To determine whether a Certgrinder client is authorised to get a certificate for a given list of hostnames certgrinderd checks the environment variable named CERTGRINDERD_DOMAINSETS which must contain a semicolon-separated list of comma-separated lists of hostnames permitted for the current client.

For example, if the Certgrinder client was a webserver with two vhosts, one with the name example.net and another vhost with the two names example.com and www.example.com. In this case the environment variable CERTGRINDERD_DOMAINSETS="example.net;example.com,www.example.com" would permit the client to get the two certificates it needs, and nothing else.

The list of hostnames is case insensitive. IDN names can be in either IDNA or unicode format, meaning xn--plse-gra.example and pølse.example will both work. The order of the hostnames in the list does not matter.

Configure SSH Access

Usually Certgrinder clients connect to the Certgrinder server using SSH, but other connection methods can be used if needed. The rest of this section is about configuring SSH access for clients.

Each Certgrinder client must generate an SSH key which is to be added to ~/.ssh/authorized_keys on the Certgrinder server. Each entry must be restricted with:

	A from= specifying the IP the Certgrinder client connects from (optional but recommended).

	An environment= restricting which names it may ask for, see above (required).

	command= to restrict the command it can run (optional but recommended). Remember $SSH_ORIGINAL_COMMAND so certgrinder can set certgrinderd command-line arguments.

	The restrict keyword to limit tunneling and forwarding and such (optional but recommended). The restrict option was added to OpenSSH in version 7.4, it might not be available everywhere.

Something like this works:

from="2001:DB8::15",environment="CERTGRINDERD_DOMAINSETS=example.com,www.example.com;example.net",command="/path/to/certgrinderd $SSH_ORIGINAL_COMMAND",restrict ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOegnR+qnK2FEoaSrVwHgCIxjFkVEbW4VO31/Hd2mAwk ansible-generated on webproxy2.example.com

To make the environment= foo work the option PermitUserEnvironment=CERTGRINDERD_DOMAINSETS needs to be added to sshd_config.

Auth and Cleanup Hooks

The configured auth-hook and cleanup-hook scripts can be adapted as needed to update whatever local or remote web- or DNS-server you decide to use to serve challenges.

Both scripts get the same environment variables to work with:

	$CERTBOT_DOMAIN
	The domain being authenticated, like www.example.com

	$CERTBOT_VALIDATION
	The validation string (the secret which LE looks for)

	$CERTBOT_TOKEN
	The filename containing the secret (only relevant for HTTP-01)

	$ACMEZONE
	The DNS zone used for challenges (only relevant for DNS-01)

	$WEBROOT
	The path to the webroot used for challenges (only relevant for HTTP-01)

Both scripts must be able to handle the challenge type(s) you use. The same script will be called first for DNS-01 (if enabled), then for HTTP-01 (if enabled).

Testing

When the server has been configured with hooks you can test from a client using just SSH and a manually generated CSR, with something like: cat mail4.example.com.csr | ssh certgrinderd@certgrinder.example.org -T -- --staging get certificate where -T is to prevent SSH from allocating a TTY on the server, -- is to mark the end of the SSH args, and --staging is to make certgrinderd use the LetsEncrypt staging servers. If all goes well it should output some logging and a certificate chain.

Command Line Usage

certgrinderd version 0.18.0-dev. See the manpage certgrinderd(8) or ReadTheDocs for more info.

usage: certgrinderd [-h] [--acme-email ACME-EMAIL]
 [--acme-server-url ACME-SERVER-URL] [-z ACME-ZONE]
 [-A AUTH-HOOK] [--certbot-command CERTBOT-COMMAND]
 [--certbot-config-dir CERTBOT-CONFIG-DIR]
 [--certbot-logs-dir CERTBOT-LOGS-DIR]
 [--certbot-work-dir CERTBOT-WORK-DIR] [-C CLEANUP-HOOK]
 [-c CONFIG-FILE] [--certificate-file CERTIFICATE-FILE]
 [--csr-file CSR-FILE] [-d]
 [-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}] [-p PID-DIR]
 [--preferred-chain PREFERRED-CHAIN]
 [--skip-acme-server-cert-verify] [-s]
 [--syslog-facility SYSLOG-FACILITY]
 [--syslog-socket SYSLOG-SOCKET] [-t TEMP-DIR]
 [-w WEB-ROOT]
 {get,show,help,ping} ...

Positional Arguments

	command

	Possible choices: get, show, help, ping

Command (required)

Named Arguments

	--acme-email

	The email for the ACME account.

	--acme-server-url

	The url for the ACME server to use.

	-z, --acme-zone

	The DNS zone to pass to the auth hook script as env. var. ACMEZONE. For DNS-01 challenges.

	-A, --auth-hook

	The hook script to call to prepare auth challenges before calling Certbot

	--certbot-command

	The Certbot command to call between auth hook and cleanup hook

	--certbot-config-dir

	The path to pass to Certbot as –config-dir

	--certbot-logs-dir

	The path to pass to Certbot as –logs-dir

	--certbot-work-dir

	The path to pass to Certbot as –work-dir

	-C, --cleanup-hook

	The hook script to call to clean up auth challenges after calling Certbot

	-c, --config-file

	The path to the certgrinderd config file to use, in YML format.

	--certificate-file

	The path to the PEM formatted certificate chain file to use instead of getting it from stdin.

	--csr-file

	The path to the PEM formatted CSR file to use instead of getting it from stdin.

	-d, --debug

	Debug mode. Equal to setting –log-level=DEBUG.

	-l, --log-level

	Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL

Logging level. One of DEBUG, INFO, WARNING, ERROR, CRITICAL. Defaults to INFO.

	-p, --pid-dir

	The directory to store the PID file in

	--preferred-chain

	The preferred chain to use. Adds –preferred-chain to the Certbot command. Use to pick preferred signing chain when alternatives are available. Replace spaces with underscores in the chain name, so DST_Root_CA_X3 or ISRG_Root_X1 for prod or Fake_LE_Root_X1 or Fake_LE_Root_X2 for staging.

	--skip-acme-server-cert-verify

	Do not verify the ACME servers certificate

	-s, --staging

	Staging mode. Equal to setting –acme-server-url https://acme-staging-v02.api.letsencrypt.org/directory

	--syslog-facility

	The facility to use for syslog messages

	--syslog-socket

	The socket to use for syslog messages

	-t, --temp-dir

	The directory to store temporary files in

	-w, --web-root

	The path to pass to the auth hook script as env WEBROOT to use for HTTP-01 challenges.

Sub-commands:

get

Use the “get” command to get certificates or OCSP responses

certgrinderd get [-h] {certificate,ocsp} ...

Positional Arguments

	subcommand

	Possible choices: certificate, ocsp

Specify what to get using one of the available get sub-commands

Sub-commands:

certificate

Get a new certificate. Requires a CSR.

certgrinderd get certificate [-h]

ocsp

Get an OCSP response for the provided certificate.

certgrinderd get ocsp [-h]

show

Use the “show” command to show configuration, CSR info, or certificate info.

certgrinderd show [-h] {certificate,csr,configuration} ...

Positional Arguments

	subcommand

	Possible choices: certificate, csr, configuration

Specify what to show using one of the available show sub-commands

Sub-commands:

certificate

Tell certgrinder to output information about the provided certificate.

certgrinderd show certificate [-h]

csr

Tell certgrinder to output information about the provided CSR.

certgrinderd show csr [-h]

configuration

Tell certgrinder to output the current configuration

certgrinderd show configuration [-h]

help

The “help” command just outputs the usage help

certgrinderd help [-h]

ping

The “ping” command is used by the certgrinder client to verify connectivity to the server. It just outputs the word “pong” to stdout.

certgrinderd ping [-h]

Class Methods

	
class certgrinderd.Certgrinderd(userconfig: Optional[Dict[str, Optional[Union[str, bool]]]] = None)

	The Certgrinderd server class.

	
__init__(userconfig: Optional[Dict[str, Optional[Union[str, bool]]]] = None) → None

	Merge userconfig with defaults and configure logging.

	Parameters

	userconfig – A dict of configuration to merge with default config

	Returns

	None

	
static check_csr(csr: cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest) → bool

	Check that this CSR is valid, all things considered.

First check that the CSR has exactly one CommonName, and that that CN is
also present in the list of SubjectAltNames.

Then make sure that the environment var CERTGRINDERD_DOMAINSETS exists
and contains all the names from the CSR in one of the domainsets.

	Parameters

	csr – The CSR object

	Returns

	True if the CSR is OK, False otherwise

	
classmethod check_ocsp_response(ocsp_request: cryptography.hazmat.backends.openssl.ocsp._OCSPRequest, ocsp_response: cryptography.hazmat.backends.openssl.ocsp._OCSPResponse, certificate: cryptography.x509.base.Certificate, issuer: cryptography.x509.base.Certificate) → bool

	Check that the OCSP response is valid for the OCSP request and cert/issuer.

Return True if the OCSP response is good, regardless of the certificate revocation status. Implements all the checks in RFC2560 3.2.

	Parameters

	
	ocsp_request – The OCSP request object to check

	ocsp_response – The OCSP response object to check

	certificate – The certificate the OCSP request is for

	issuer – The issuer of the certificate

	Returns

	True if the OCSP response is valid, False if not

	
static check_ocsp_response_issuer(ocsp_request: cryptography.hazmat.backends.openssl.ocsp._OCSPRequest, ocsp_response: cryptography.hazmat.backends.openssl.ocsp._OCSPResponse) → bool

	Check that the response matches the request.

	Parameters

	
	ocsp_request – The OCSP request object

	ocsp_response – The OCSP response object

	Returns

	Boolean - True if all is well, False if a problem was found

	
classmethod check_ocsp_response_signature(ocsp_response: cryptography.hazmat.backends.openssl.ocsp._OCSPResponse, issuers: List[cryptography.x509.base.Certificate]) → bool

	Check the signature of the OCSP response.

	Parameters

	
	ocsp_response – The OCSP response to check

	issuers – A list of issuer(s)

	Returns

	Boolean - True if all is well, False if a problem was found

	
static check_ocsp_response_timing(ocsp_response: cryptography.hazmat.backends.openssl.ocsp._OCSPResponse) → bool

	Check the timestamps of the OCSP response.

	Parameters

	ocsp_response – The OCSP response object to check

	Returns

	Boolean - True if all is well, False if a problem was found

	
classmethod create_ocsp_request(certificate: cryptography.x509.base.Certificate, issuer: cryptography.x509.base.Certificate) → cryptography.hazmat.backends.openssl.ocsp._OCSPRequest

	Create and return an OCSP request based on the cert+issuer.

	Parameters

	
	certificate – The certificate to create an OCSP request for

	issuer – The issuer of the certificate

	Returns

	The OCSP request

	
get_certbot_command(challengetype: str, csrpath: str, fullchainpath: str, certpath: str, chainpath: str) → List[str]

	Put the certbot command together.

Start with self.conf["certbot-command"] and append all the needed options.

Optionally add --email and a bunch of certbot settings as needed.

	Parameters

	
	challengetype – The type of challenge, dns or http

	csrpath – The path to the CSR

	fullchainpath – The path to save the certificate+issuer

	certpath – The path to save the certificate (without issuer)

	chainpath – The path to save the issuer (without certificate)

	Returns

	The certbot command as a list

	
get_certificate(csrpath: str) → None

	Get a cert using DNS-01 or HTTP-01 by calling self.run_certbot() for each.

If self.conf["acme-zone"] is set then DNS-01 is attempted. Return if it
results in a new certificate.

If self.conf["web-root"] is set then HTTP-01 is attempted. Return if it
results in a new certificate.

If there is still no certificate log an error and return anyway.

	Parameters

	csrpath – The path to the CSR

	Returns

	None

	
get_certificate_command() → None

	This method is called when the get certificate subcommand is used.

	Parameters

	None –

	Returns

	None

	
get_ocsp_command() → None

	This method is called when the get ocsp subcommand is used.

It simply prints the DER formatted OCSP response to stdout if we get one.

	Parameters

	None –

	Returns

	None

	
get_ocsp_response(certpath: Optional[str]) → cryptography.hazmat.backends.openssl.ocsp._OCSPResponse

	Parse certificate, get and return OCSP response.

	Parameters

	certpath – The path of the certificate chain to get OCSP response for (optional)

	Returns

	The OCSPRequest object

	
classmethod parse_certificate(certificate_bytes: bytes) → cryptography.x509.base.Certificate

	Parse and return individual certificate, or calls sys.exit(1) if something goes wrong.

	Parameters

	certificate_bytes – A chunk of bytes representing a PEM certificate

	Returns

	A cryptography.x509.Certificate object.

	
classmethod parse_certificate_chain(certpath: Optional[str], expected_length: Optional[int] = None) → List[cryptography.x509.base.Certificate]

	Parse certificate chain from path or stdin.

	Parameters

	
	certpath – The path of the certificate chain to parse (optional),
chainbytes are taken from stdin if not provided.

	expected_length – The number of certificates to expect. Optional.

	Returns

	A list of cryptography.x509.Certificate objects in the order they appear
in the input.

	
static parse_csr(csrstring: str = '') → cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest

	Parse CSR with cryptography.x509.load_pem_x509_csr(), return CSR object.

Takes the CSR data from sys.stdin if the csrstring argument is empty.

	Parameters

	csrstring – The PEM formatted CSR as a string (optional)

	Returns

	The CSR object

	
static ping_command() → None

	Reply to the ping command by outputting the string ‘pong’ to stdout.

Args: None
Returns: None

	
process_csr(csrpath: str = '') → None

	Load the CSR, use it to get a certificate, and cleanup.

Calls self.parse_csr() followed by self.check_csr(), and then exists if any
problems are found with the CSR.

Then self.get_certificate() is called, which in turn calls Certbot, which writes
the certificate to stdout.

Finally the CSR is deleted.

	Parameters

	None –

	Returns

	None

	
run_certbot(command: List[str], env: Dict[str, str], fullchainpath: str) → bool

	Call certbot, check exitcode, output cert, return bool success.

	Parameters

	
	command – A list of certbot command elements

	env – A dictionary of the environment to pass to subprocess.run()

	fullchainpath – The path to read the certificate+chain from after Certbot runs

	Returns

	True if Certbot command exitcode was 0, False otherwise

	
static save_csr(csr: cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest, path: str) → None

	Save the CSR object to the path in PEM format.

	Parameters

	
	csr – The CSR object

	path – The path to save it in

	Returns

	None

	
static split_pem_chain(pem_chain_bytes: bytes) → List[bytes]

	Split a PEM chain into a list of bytes of the individual PEM certificates.

	Parameters

	pem_chain_bytes – The bytes representing the PEM chain

	Returns

	A list of 0 or more bytes chunks representing each certificate

	
static verify_signature(pubkey: Union[cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey, cryptography.hazmat.primitives.asymmetric.ed448.Ed448PublicKey, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey, cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey], signature: bytes, payload: bytes, hashalgo: cryptography.hazmat.primitives.hashes.HashAlgorithm) → bool

	Verify a signature on a payload using the provided public key and hash algorithm.

Supports RSA and EC public keys. Assumes PKCS1v15 padding for RSA keys.

	Parameters

	
	pubkey – The public key

	signature – The bytes representing the signature

	payload – The bytes representing the signed data

	hashalgo – The hashing algorithm used for the signature

Certgrinder

The certgrinder client is responsible for generating a keypair and a CSR, which it uses to contact the Certgrinder server certgrinderd over SSH to get a signed certificate. The following section explains how to install and configure it to get certificates from the Certgrinder server.

Installation

This section explains the steps to install a Certgrinder client. Repeat these steps on each server in need of certificates!

Install certgrinder

You can install certgrinder from pip with pip install certgrinder. This will install the latest certgrinder release. It will pull in the dependencies it needs automatically.

You can also checkout the Github repo and install the deps from requirements.txt by hand if you prefer. If you want to install with pip directly from Git the following may help:
pip install "git+https://github.com/tykling/certgrinder/#egg=certgrinder&subdirectory=client"

Create Certgrinder User

Since certgrinder is designed to be run under a separate system user one should be created. The user needs sudo access if (and only if) it is to be able to reload/restart services after renewing certificates. Sometimes it is also necessary to add some system users to the certgrinder group so they can read certificates. More on that later.

The user also needs to run ssh-keygen and the SSH key needs to be added to the authorized_keys file on the Certgrinder server. Make sure to test the SSH access works (hint: check firewalls, v4 vs v6 etc).

Configuration

Configuration of certgrinder can be done using command-line options, or a configuration file, or a combination of the two.

The certgrinder configuration file is in YAML format. An example config named certgrinder.conf.dist can be found in the distribution. use --config-file or -f to specify the config file location.

Each config item can be specified either in the YAML config file as a key: value pair, or on the commandline as --key value - the latter overriding the former if both are present. For example, if the configfile has log-level: INFO and the command-line has --log-level: DEBUG then the effective log-level would be DEBUG.

This is an alphabetical list of the configurable options:

	alternate-chain
	Instruct certgrinder to request the alternate chain for signing.

For production this means using the short chain with 1 intermediate signed by ISRG Root X1 instead of using the default long chain with 2 intermediates signed by DST Root CA X3.

For staging it means using Fake LE Root X2 (1 intermediate) instead of the usual Fake LE Root X1 (2 intermediates).

Default: False

	certgrinderd
	The command to run as certgrinderd. Usually this will be something like ssh certgrinderd@certgrinder.example.com -T, possibly also with a --config-file for certgrinderd if needed.

Default: None

	cert-renew-threshold-days
	A certificate will be renewed when it has less than this many days of lifetime left.

Default: 30

	domain-list
	Comma-separated lists of domains for the certificates. Can be specified multiple times on the command-line, --domain-list example.com,www.example.com --domain-list example.net means two certificates, the first with two names, the second with one name.

Default: None

	invalid-ca-cn-list
	List of CommonName of certificate issuers to consider invalid. This is not a regular CA certificate validity check, it is used to detect certificates issued by LetsEncrypt staging servers as invalid.

Default: ["Fake LE Intermediate X1", "Fake LE Intermediate X2"]

	log-level
	Sets the verbosity level for console and syslog logging. One of DEBUG, INFO, WARNING, ERROR, CRITICAL.

Default: INFO

	key-type-list
	List of key types to enable. Supported choices are rsa and ecdsa. Files for each keytype will be suffixed with .rsa.ext and ecdsa.ext, respectively.

Default: ["rsa", "ecdsa"]

	name-server
	Set this to a DNS server IP (v4 or v6, no hostnames) to use that DNS server instead of the system resolver.

Default: None

	ocsp-renew-threshold-percent
	The amount of time in percent between produced_at and next_update that must have passed before an OCSP response is considered too old. As of January 2021 LetsEncrypt has 7 days between produced_at and next_update in OCSP responses, so the default of 50% means OCSP responses will be renewed after 3.5 days (half of the validity period) has passed.

As of January 2021 LetsEncrypt produces new OCSP responses after half of the validity period has passed, so any setting lower than that will be pointless. Setting this lower than 50 will just result in Certgrinder fetching the same OCSP response over and over.

Set to 0 to always renew OCSP responses regardless of their age.

Default: 50

	path
	The directory used for keys, CSRs and certificates. Must exist and be writable by the user running Certgrinder.

Default: None

	periodic-sleep-minutes
	Certgrinder will pick a random number of minutes between 0 and this number and sleep for that long before doing periodic actions. Set to 0 to disable sleeping.

Default: 60

	pid-dir
	The directory to place the certgrinderd PID file in.

Default: /tmp

	post-renew-hooks
	A list of commands which certgrinder must run after renewing one or more certificates or OCSP responses. Use this to reload/restart services which need to be poked after the certificate changes. Can be specified multiple times on the command-line. Remember to include sudo or whatever if needed. Wrap complex commands in a small shell script to avoid quoting issues.

Default: None

	post-renew-hooks-dir
	A path to a hooks.d style directory containing files to be executed after renewing one or more certificates or OCSP responses. Each executable file in this path will be run in the order returned by os.listdir(). Set post-renew-hooks-dir-runner if something like sudo is needed to elevate privileges before running the hooks.

Default: None

	post-renew-hooks-dir-runner
	When this is set it will be executed in place of each executable in post-renew-hooks-dir with the executable as argument.

Example: If post-renew-hooks-dir contains two executable files hook1 and hook2 and post-renew-hooks-dir-runner is set to /usr/local/bin/sudo then certgrinder will execute /usr/local/bin/sudo /path/to/hooks/dir/hook1 and then /usr/local/bin/sudo /path/to/hooks/dir/hook2 instead of executing the two hooks directly.

Default: None

	staging
	Enable staging mode. Adds --staging to the certgrinderd command, and considers certificates issued by LE staging servers as valid.

Default: False

	syslog-facility
	Set this and syslog-socket to enable logging to syslog. Must be a value supported by logging.handlers.SysLogHandler like LOG_USER or LOG_LOCAL0.

Default: None

	syslog-socket
	Set this and syslog-facility to enable logging to syslog.

Default: None

	tlsa-port
	Set this to the port (like 443) when using show tlsa or check tlsa subcommands.

Default: None

	tlsa-protocol
	Set this to the protocol (like tcp) when using show tlsa or check tlsa subcommands.

Default: None

	tlsa-type-list
	Set this to enable a TLSA type (can be specified multiple times). The TLSA type must be specified as three integers, one of: 310, 311 or 312. Default: is all three pubkey types.

Default: ["310", "311", "312"]

ACME Challenges

Finally you need to choose which challenge type to use for this certgrinder client. If DNS-01 you need to create one or more CNAME record pointing somewhere. If HTTP-01 you need to create an HTTP redirect. See the section on challenges for more info.

Testing

At this point you should be ready to test! Start by checking with SSH manually to see that the SSH key is installed properly on the Certgrinder server, and firewalls are open. Certgrinder has a --staging switch which makes certgrinderd use the LetsEncrypt staging environment. Use this until everything works! certgrinder outputs some info on what happens, and can output more with -d / --debug, but sometimes you need to check syslog on the Certgrinder server.

Crontab job

I run Certgrinder daily, although by default it only attempts certificate renewal when less than 30 days validity remains, and OCSP response renewal when half the validity period has passed.

When everything above works it is time to automate it by adding it to crontab. The following line works for me (the periodic command sleeps a random number of minutes before doing its thing, so all the clients don’t contact the Certgrinder server at once):

0 2 * * * certgrinder /usr/home/certgrinder/virtualenv/bin/certgrinder -c /usr/home/certgrinder/certgrinder.conf periodic

Client Commands

All the functionality in Certgrinder can be accessed by using commands and subcommands. The following commands are available:

	check certificate command

	check connection command

	check ocsp command

	check tlsa command

	get certificate command

	get ocsp command

	help command

	periodic command

	show certificate command

	show configuration command

	show ocsp command

	show paths command

	show spki command

	show tlsa command

	version command

check commands

All the subcommands for the check commands return exit code 1 if a problem is found and 0 if everything is fine.

check certificate command

The check certificate subcommand loops over the configured domainsets and checks the validity of the certificate for each. If a problem is found certgrinder will exit with exit code 1, if all is well the exit code will be 0.

check connection command

The check connection subcommand simply checks that the connection to the certgrinderd server works as expected. It calls the ping command on the certgrinderd server and expects to see the string pong on stdout. If the expected string is found the exit code will be 0, if a problem is found the exit code will be 1.

check ocsp command

The check ocsp subcommand loops over the configured domainsets and checks for the existance of an OCSP response for each. If an OCSP response for a certificate is missing or too old certgrinder will exit with exit code 1, if all is well the exit code will be 0.

An OCSP response is considered too old when more than ocsp-renew-threshold-percent percent of the time between producedAt and nextUpdate has passed. As of January 2021 LetsEncrypt has 7 days (one week) between producedAt and nextUpdate which means OCSP responses will be renewed after 3.5 days with the default ocsp-renew-threshold-percent setting of 50.

check tlsa command

The check tlsa subcommand is like the show tlsa subcommand but it goes one step further and actually checks in the DNS if the records could be found, and prints some output accordingly. The following example shows two runs of check tlsa mode. The first run finds no TLSA records and outputs what needs to be added:

[certgrinder@znc ~]$./virtualenv/bin/certgrinder -f certgrinder.conf check tlsa 443 tcp
2018-02-16 08:59:39 +0000 INFO: Processing domains: znc.tyknet.dk
2018-02-16 08:59:39 +0000 INFO: Looking up TLSA records for _443._tcp.znc.tyknet.dk
2018-02-16 08:59:39 +0000 WARNING: No TLSA records for name _443._tcp.znc.tyknet.dk of type 3 1 0 was found in DNS. This record needs to be added:
2018-02-16 08:59:39 +0000 WARNING: _443._tcp.znc.tyknet.dk 3 1 0 30820222300d06092a864886f70d01010105000382020f003082020a0282020100bb852c1035ee7ce08d69a13f5cca95374dc872b2028e65ee34600478076c9185e79ff373d3acfc4aa29f152b9abcb515e449417ce7768f7f91915ff2d6e75d732e863021240ce4b24475220306e6ffd3f963dc4a8eafb4077f635d8a0d655b5921df2bcb2e6e610aa8db1d79b6da14d1fc7d842c1e5d4cbfa6697617aa9d2251be1a386fd7c14eccef21151c35d336ebba8f97d3160b35775c57079d2594b1d2a9d593bc408ccf2a01b171f4a3e65005b07df7efd77bac3d5f430b0aab5f161b7d7ebc40b600064ec3a4c59d64a1ec1f27c234a08a473aa0fcdf6008492161af6a1d9179a432622776e675f4d3dafb3d1d00b3189c4cdcd6de250721f012fc5f34426d06cb4b045b04ba2bd7ac2fcedce429dfde3dffcbb8b2df50cade99458c954de157b88751c26b79413d6eef5e26ab008e7aa7c69be3d6163f80f5d565b87f9030b54a23cf4c704e509cc84e618a446c75684893d65bd5fd38ef6b839d316b5616b06bbafbb7c2aa6f3db217b4df6e5f02b85d8685be14a9d480ee56c1b4454a88fc01a4532a55e926929fea70822088054f5ddf957e8c5ca2c3808c8a09b70c7eeda4883aaf6f1092033beeb0ff5621a8b8ddf3455f1d30d2398fe786038a39e0825bb6bac9865500de33eff67e3984a73b7592bde5897681b52da06c93447a0efa4d1fb52bc151811776ef501ca818c68fd1d4fe3d73c5e5526b4bf47f0203010001
2018-02-16 08:59:39 +0000 WARNING: No TLSA records for name _443._tcp.znc.tyknet.dk of type 3 1 1 was found in DNS. This record needs to be added:
2018-02-16 08:59:39 +0000 WARNING: _443._tcp.znc.tyknet.dk 3 1 1 5b95cb6ea387570f1f3dc4508794ca13a17a665733bab5f76b1e330f2fa13361
2018-02-16 08:59:39 +0000 WARNING: No TLSA records for name _443._tcp.znc.tyknet.dk of type 3 1 2 was found in DNS. This record needs to be added:
2018-02-16 08:59:39 +0000 WARNING: _443._tcp.znc.tyknet.dk 3 1 2 24d49f3c974129b9c28b5e6213892a404d8e9777c5a2e977333b88442d4e16ac0bc732001ec783df795c194704149bd18bbca21087111b33fa79e84dab05e760
2018-02-16 08:59:39 +0000 INFO: Done processing domains: znc.tyknet.dk
[certgrinder@znc ~]$

The second run is after adding the suggested records to DNS:

[certgrinder@znc ~]$./virtualenv/bin/certgrinder -f certgrinder.conf check tlsa 443 tcp
2018-02-16 09:16:27 +0000 INFO: Processing domains: znc.tyknet.dk
2018-02-16 09:16:27 +0000 INFO: Looking up TLSA records for _443._tcp.znc.tyknet.dk
2018-02-16 09:16:27 +0000 INFO: TLSA record for name _443._tcp.znc.tyknet.dk type 3 1 0 found in DNS matches the local key, good.
2018-02-16 09:16:27 +0000 INFO: TLSA record for name _443._tcp.znc.tyknet.dk type 3 1 1 found in DNS matches the local key, good.
2018-02-16 09:16:27 +0000 INFO: TLSA record for name _443._tcp.znc.tyknet.dk type 3 1 2 found in DNS matches the local key, good.
2018-02-16 09:16:27 +0000 INFO: Done processing domains: znc.tyknet.dk
[certgrinder@znc ~]$

All TLSA records for this public key can now be found in the DNS.

NOTE: As there might be additional records for the same name which do not belong to this server/key (for example in a loadbalanced or anycast setup), no attempts are made to warn about wrong/old/superfluous TLSA records. This might be added in a future version as a switch to tell Certgrinder that the local public key is the only one in existence for this service.

get commands

The get subcommands do all the real work.

get certificate command

The get certificate subcommand loops over the configured domainsets and gets a new certificate for each, regardless of the current status of existing certificates. Use with care, only for troubleshooting. Do not use from cron. Use the periodic command instead.

get ocsp command

The get ocsp subcommand loops over the configured domainsets and gets a new OCSP response for each, regardless of the current status of existing OCSP responses. Do not use from cron. Use the periodic command instead.

help command

The help command is just a shortcut for -h which shows commandline usage and help.

periodic command

The periodic command sleeps for a random number of minutes between 0 and the config setting periodic-sleep-minutes before doing anything. Set this setting to 0 to disable sleeping.

After sleeping the certificates and OCSP responses are checked and renewed as needed. This command is meant to be run daily from cron or similar.

show commands

The show subcommands show information but never change anything.

show certificate command

The show certificate subcommand loops over configured domainsets and outputs information about each certificate (if any).

show configuration command

The show configuration subcommand just dumps the active configuration as a pretty printed JSON object and exits. Useful for testing or debugging configuration issues.

show ocsp command

The show ocsp subcommand loops over the configured domainsets and shows info about each OCSP response.

show paths command

The show paths subcommand loops over the configured domainsets and outputs the paths used for keys, certificates and OCSP responses.

show spki command

The show spki subcommand outputs pin-sha256 spki pins for the public keys. The HPKP standard https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning defined the pin-sha256 format for public key pins. While the HPKP standard didn’t get much traction the pinning format is used in various places now, so certgrinder can generate them.

The operation is pretty simple:

[certgrinder@znc ~]$./virtualenv/bin/certgrinder -f certgrinder.conf show spki
2018-02-16 09:28:37 +0000 INFO: Processing domains: znc.tyknet.dk
2018-02-16 09:28:37 +0000 INFO: pin-sha256="W5XLbqOHVw8fPcRQh5TKE6F6ZlczurX3ax4zDy+hM2E="
2018-02-16 09:28:37 +0000 INFO: Done processing domains: znc.tyknet.dk
[certgrinder@znc ~]$

show tlsa command

The show tlsa subcommand loops over the configured domainsets and generates TLSA records for the public keys. The result is printed to the terminal in a format suitable for putting in the DNS. It looks something like this:

[certgrinder@znc ~]$./virtualenv/bin/certgrinder -f certgrinder.conf show tlsa 443 tcp
2018-02-16 08:42:18 +0000 INFO: Processing domains: znc.tyknet.dk
2018-02-16 08:42:18 +0000 INFO: TLSA records for _443._tcp.znc.tyknet.dk:
2018-02-16 08:42:18 +0000 INFO: _443._tcp.znc.tyknet.dk 3 1 0 30820222300d06092a864886f70d01010105000382020f003082020a0282020100bb852c1035ee7ce08d69a13f5cca95374dc872b2028e65ee34600478076c9185e79ff373d3acfc4aa29f152b9abcb515e449417ce7768f7f91915ff2d6e75d732e863021240ce4b24475220306e6ffd3f963dc4a8eafb4077f635d8a0d655b5921df2bcb2e6e610aa8db1d79b6da14d1fc7d842c1e5d4cbfa6697617aa9d2251be1a386fd7c14eccef21151c35d336ebba8f97d3160b35775c57079d2594b1d2a9d593bc408ccf2a01b171f4a3e65005b07df7efd77bac3d5f430b0aab5f161b7d7ebc40b600064ec3a4c59d64a1ec1f27c234a08a473aa0fcdf6008492161af6a1d9179a432622776e675f4d3dafb3d1d00b3189c4cdcd6de250721f012fc5f34426d06cb4b045b04ba2bd7ac2fcedce429dfde3dffcbb8b2df50cade99458c954de157b88751c26b79413d6eef5e26ab008e7aa7c69be3d6163f80f5d565b87f9030b54a23cf4c704e509cc84e618a446c75684893d65bd5fd38ef6b839d316b5616b06bbafbb7c2aa6f3db217b4df6e5f02b85d8685be14a9d480ee56c1b4454a88fc01a4532a55e926929fea70822088054f5ddf957e8c5ca2c3808c8a09b70c7eeda4883aaf6f1092033beeb0ff5621a8b8ddf3455f1d30d2398fe786038a39e0825bb6bac9865500de33eff67e3984a73b7592bde5897681b52da06c93447a0efa4d1fb52bc151811776ef501ca818c68fd1d4fe3d73c5e5526b4bf47f0203010001
2018-02-16 08:42:18 +0000 INFO: _443._tcp.znc.tyknet.dk 3 1 1 5b95cb6ea387570f1f3dc4508794ca13a17a665733bab5f76b1e330f2fa13361
2018-02-16 08:42:18 +0000 INFO: _443._tcp.znc.tyknet.dk 3 1 2 24d49f3c974129b9c28b5e6213892a404d8e9777c5a2e977333b88442d4e16ac0bc732001ec783df795c194704149bd18bbca21087111b33fa79e84dab05e760
[certgrinder@znc ~]$

Shown above is the show tlsa subcommand in action. The value supplied should be the port and protocol of the service, in the example above it is a HTTPS service, so the TLSA record is the service hostname prefixed with _443._tcp.

version command

The version command is just a shortcut for -v which shows the Certgrinder version and exits.

Command Line Usage

Certgrinder version 0.18.0-dev. See the manpage or ReadTheDocs for more info.

usage: certgrinder [-h] [-a] [--certgrinderd CERTGRINDERD]
 [--cert-renew-threshold-days CERT-RENEW-THRESHOLD-DAYS]
 [-c CONFIG-FILE] [-d] [-D DOMAIN-LIST]
 [--invalid-ca-cn-list INVALID-CA-CN-LIST]
 [-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}] [-k {rsa,ecdsa}]
 [-n NAME-SERVER] [--now] [-o OCSP-RENEW-THRESHOLD-PERCENT]
 [--path PATH]
 [--periodic-sleep-minutes PERIODIC-SLEEP-MINUTES]
 [-p PID-DIR] [--post-renew-hooks POST-RENEW-HOOKS]
 [--post-renew-hooks-dir POST-RENEW-HOOKS-DIR]
 [--post-renew-hooks-dir-runner POST-RENEW-HOOKS-DIR-RUNNER]
 [-q] [-s] [--syslog-facility SYSLOG-FACILITY]
 [--syslog-socket SYSLOG-SOCKET] [--tlsa-port TLSA-PORT]
 [--tlsa-protocol TLSA-PROTOCOL]
 [--tlsa-type-list {310,311,312}] [-v]
 {check,get,help,periodic,show,version} ...

Positional Arguments

	command

	Possible choices: check, get, help, periodic, show, version

Command (required)

Named Arguments

	-a, --alternate-chain

	Use alternate chain. For production this means using the short chain with 1 intermediate signed by ‘ISRG Root X1’ instead of using the long chain with 2 intermediates signed by ‘DST Root CA X3’. For staging it means using ‘Fake LE Root X2’ (1 intermediate) instead of the usual ‘Fake LE Root X1’ (2 intermediates).

	--certgrinderd

	The command to reach the certgrinderd server, will get the input (CSR or cert chain) on stdin. Usually something like ‘ssh certgrinderd@server -T’

	--cert-renew-threshold-days

	A certificate is renewed when it has less than this many days of lifetime left. Default: 30

	-c, --config-file

	The path to the certgrinder.yml config file to use

	-d, --debug

	Debug mode. Equal to setting –log-level=DEBUG.

	-D, --domain-list

	Comma separated list of domains for a certificate. Can be specified multiple times.

	--invalid-ca-cn-list

	The CommonName of an issuer (CA intermediate) to consider invalid. Can be specified multiple times.

	-l, --log-level

	Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL

Logging level. One of DEBUG, INFO, WARNING, ERROR, CRITICAL. Defaults to INFO.

	-k, --key-type-list

	Possible choices: rsa, ecdsa

The keytypes to enable. Valid values are ‘rsa’ and ‘ecdsa’. Can be specified multiple times. Defaults to both rsa and ecdsa.

	-n, --name-server

	Tell certgrinder to use this DNS server IP to lookup TLSA records. Only relevant with -c / –checktlsa. Only v4/v6 IPs, no hostnames.

	--now

	Run periodic command without delay. Equal to setting –periodic-sleep-minutes 0.

	-o, --ocsp-renew-threshold-percent

	Possible choices: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100

An integer between 0 and 100 specifying the amount of time in percent between produced_at and next_update which must have passed before an OCSP response is considered too old. Defaults to 50.

	--path

	Tell certgrinder to use the specified directory for keys, CSRs and certificates. The directory must exist and be writeable by the user running certgrinder.

	--periodic-sleep-minutes

	Tell certgrinder to sleep for a random number of minutes between 0 and this number before doing anything when the periodic command is used. Set to 0 to disable sleeping.

	-p, --pid-dir

	The directory to store the PID file in

	--post-renew-hooks

	The list of commands to run after one or more certificates are renewed. Most such commands will need root access to run, remember to prefix the command with ‘sudo’ as needed. Can be specified multiple times. Default: None

	--post-renew-hooks-dir

	Path to a folder containing executables to run after one or more certificates or OCSP responses are renewed. These will execute under the regular certgrinder user uid, so make sure to use sudo/doas in scripts or suid executables as needed. Default: None

	--post-renew-hooks-dir-runner

	Path to an executable like sudo to be used to run each of the executables in the post renew hooks dir. Default: None

	-q, --quiet

	Quiet mode. No output at all if there is nothing to do, and no errors are encountered. Equal to setting –log-level=WARNING.

	-s, --staging

	Staging mode. Sets –acme-server-url https://acme-staging-v02.api.letsencrypt.org/directory and –invalid-ca-cn-list empty. Use this while playing around to avoid hitting rate limits!

	--syslog-facility

	The syslog facility to use. Set this and syslog-socket to enable logging to syslog.

	--syslog-socket

	The syslog socket to connect to. Set this and syslog-facility to enable logging to syslog.

	--tlsa-port

	The service port number (like 443) for TLSA operations.

	--tlsa-protocol

	The service protocol (like tcp) for TLSA operations.

	--tlsa-type-list

	Possible choices: 310, 311, 312

Enables a TLSA type for TLSA operations. Can be specified multiple times.

	-v, --version

	Show version and exit.

Sub-commands:

check

Use the “check” command to check certificates, OCSP responses and TLSA records. Returns exit code 0 if all is well, and 1 if something needs attention.

certgrinder check [-h] {certificate,connection,ocsp,tlsa} ...

Positional Arguments

	subcommand

	Possible choices: certificate, connection, ocsp, tlsa

Specify what to check using one of the available check sub-commands.

Sub-commands:

certificate

Tell certgrinder to check certificate validity for all configured domainsets. Returns exit code 1 if any problem is found, exit code 0 if all is well.

certgrinder check certificate [-h]

connection

Tell certgrinder to check the connection to the certgrinderd server by calling the certgrinderd ‘ping’ command which should return the string ‘pong’ if all is well.

certgrinder check connection [-h]

ocsp

Tell certgrinder to check the OCSP response validity for certificates for all configured domainsets. Returns exit code 1 if any problem is found, exit code 0 if all is well.

certgrinder check ocsp [-h]

tlsa

Tell certgrinder to lookup TLSA records for the given port and protocol in the DNS and compare with what we have locally, for example: ‘certgrinder check tlsa 853 tcp’

certgrinder check tlsa [-h] tlsa-port tlsa-protocol

Positional Arguments

	tlsa-port

	The port of the service, for example 443

	tlsa-protocol

	The protocol of the service, for example tcp

get

Use the “get” command to get certificates and OCSP responses

certgrinder get [-h] {certificate,ocsp} ...

Positional Arguments

	subcommand

	Possible choices: certificate, ocsp

Specify what to get using one of the available get sub-commands

Sub-commands:

certificate

Tell certgrinder to get new certificate(s), regardless of their current state. Rarely needed, use ‘periodic’ command instead.

certgrinder get certificate [-h]

ocsp

Tell certgrinder to get OCSP responses for the configured domainset(s). Rarely needed, use ‘periodic’ command instead.

certgrinder get ocsp [-h]

help

The “help” command just outputs the usage help

certgrinder help [-h]

periodic

The “periodic” command checks certificates and renews them as needed. Meant to be run from cron or similar daily.

certgrinder periodic [-h]

show

Use the “show” command to show certificates, TLSA records, SPKI pins or configuration.

certgrinder show [-h] {certificate,configuration,paths,ocsp,spki,tlsa} ...

Positional Arguments

	subcommand

	Possible choices: certificate, configuration, paths, ocsp, spki, tlsa

Specify what to show using one of the available show sub-commands

Sub-commands:

certificate

Tell certgrinder to output information about certificates.

certgrinder show certificate [-h]

configuration

Tell certgrinder to output the current configuration

certgrinder show configuration [-h]

paths

Tell certgrinder to output the paths used

certgrinder show paths [-h]

ocsp

Tell certgrinder to output information about OCSP responses.

certgrinder show ocsp [-h]

spki

Tell certgrinder to generate and print the pin-sha256 spki pins for the public keys it manages.

certgrinder show spki [-h]

tlsa

Use the ‘show tlsa’ sub-command to tell certgrinder to generate and print TLSA records for the given service, for example: ‘certgrinder show tlsa 443 tcp’

certgrinder show tlsa [-h] tlsa-port tlsa-protocol

Positional Arguments

	tlsa-port

	The port of the service, for example 443

	tlsa-protocol

	The protocol of the service, for example tcp

version

The “version” command just outputs the version of Certgrinder

certgrinder version [-h]

Class Methods

	
class certgrinder.Certgrinder

	The Certgrinder client class.

	
__init__() → None

	Define the default config.

	
check_certificate(certificate: Optional[cryptography.x509.base.Certificate] = None, public_key: Optional[Union[cryptography.hazmat.backends.openssl.rsa._RSAPublicKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey]] = None) → bool

	Check certificate validity and returns True or False.

This method is called by self.grind() once per domainset when the “check certificate”
subcommand is invoked.
It reads the certificate from self.certificate_path if there is no certificate arg

	Parameters

	
	certificate – The certificate to be checked

	public_key – The keypair the certificate is based on

	Returns

	True if everything is OK, False otherwise

	
static check_certificate_expiry(certificate: cryptography.x509.base.Certificate, threshold_days: int) → bool

	Check the remaining validity of the certificate.

	Parameters

	
	certificate – The certificate to check

	threshold_days – The lowest number of remaining days of validity that is considered valid

	Returns

	True if remaining certificate lifetime is >= threshold_days, False if not

	
static check_certificate_issuer(certificate: cryptography.x509.base.Certificate, invalid_ca_cn_list: List[str]) → bool

	Check the issuer of the certificate.

	Parameters

	
	certificate – The certificate to check

	invalid_ca_cn_list – The list of CA CommonName strings to consider invalid

	Returns

	True if the certificate issuer CN is not in invalid_ca_cn_list

	
static check_certificate_public_key(certificate: cryptography.x509.base.Certificate, public_key: Union[cryptography.hazmat.backends.openssl.rsa._RSAPublicKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey]) → bool

	Make sure certificate has the specified public key.

	Parameters

	
	certificate – The certificate to check

	public_key – The public key

	Returns

	True if the public key matches, False if not

	
static check_certificate_san_names(certificate: cryptography.x509.base.Certificate, san_names: List[str]) → bool

	Make sure the certificate has the provided list of names as SAN.

	Parameters

	
	certificate – The certificate to check

	san_names – A list of the names to expect

	Returns

	True if all san_names were found in the cert, and no others.

	
static check_certificate_subject(certificate: cryptography.x509.base.Certificate, subject: str) → bool

	Make sure the certificate has the specified subject.

	Parameters

	
	certificate – The certificate to check

	subject – The subject to expect

	Returns

	True if the subject matches the cert, False if not

	
classmethod check_certificate_validity(certificate: cryptography.x509.base.Certificate, invalid_ca_cn_list: List[str], threshold_days: int, san_names: List[str], public_key: Optional[Union[cryptography.hazmat.backends.openssl.rsa._RSAPublicKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey]] = None, subject: str = '') → bool

	Perform a few sanity checks of the certificate.

	Check that the issuer is valid

	Check that the certificate expiry is not exceeded

	Check that the public key is correct

	Check that the subject is correct

	Check that the SubjectAltName data is correct

	Parameters

	
	certificate – The certificate to check

	invalid_ca_cn_list – A list of CA CommonNames to consider invalid

	threshold_days – The minimum number of remaining days lifetime to considered valid.

	san_names – A list of domain names to expect in SubjectAltName of the certificate.

	keypair – The keypair the certificate is for.

	Returns

	False if a problem is found, True if all is well.

	
check_connection(stdout: Optional[bytes] = None) → bool

	The check connection subcommand method.

	Parameters

	stdout – The certgrinderd response to use instead of calling certgrinderd (optional)

	Returns

	None

	
check_ocsp() → bool

	The check ocsp subcommand method, called for each domainset by self.grind().

	Returns

	True if the OCSP response was found and is not too old, False otherwise

	
check_tlsa() → None

	The ‘check tlsa’ subcommand method, called for each domainset by self.grind().

Loops over the configured TLSA types and calls self.verify_tlsa_record() which
does the heavy lifting.

	Returns

	None

	
configure(userconfig: Dict[str, Union[str, int, bool, List[str]]]) → None

	Merge and check configuration and configure logging.

Merge the supplied userconfig dict with the default config,
checks for missing required settings, and configures logging and syslog.

	Parameters

	userconfig – dict of the config to be merged with the default config

	Returns

	None

	
static generate_csr(keypair: Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey], domains: List[str]) → cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest

	Generate and return a new CSR based on the public key and list of domains.

Only set CN since everything else is removed by LetsEncrypt in the certificate anyway.
Add all domains in subjectAltName, including the one put into CN.

	Parameters

	
	keypair – The keypair to base the CSR on

	domains – A list of domains to put in the CSR. First in the list will be cert CN.

	Returns

	The CSR object

	
static generate_private_key(keytype: str) → Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.backends.openssl.ec._EllipticCurvePrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey]

	Generate and returns a private key.

	Parameters

	keytype – “rsa” for RSA key, “ecdsa” for ECDSA and “ed25519” for ed25519

	Returns

	The keypair object

	Raises

	ValueError – For unsupported keytypes

	
static generate_spki(derkey: bytes) → str

	Generate and return a pin-sha256 spki hpkp style pin for the provided public key.

	OpenSSL equivalent command is:
	openssl x509 -in example.com.crt -pubkey -noout | openssl pkey -pubin -outform der | openssl dgst -sha256 -binary | openssl base64

	Parameters

	derkey – The bytes representing the public key in DER format

	Returns

	A string of the SPKI pin

	
static generate_tlsa_record(derkey: bytes, tlsatype: str) → str

	Generate and return the data part of a TLSA record of the requested type.

TLSA record is generated from the DER formatted public key supplied.
Returns an uppercase hex string.

	Parameters

	
	derkey – The bytes representing the public key in DER format

	tlsatype – The TLSA type (like “310”)

	Returns

	String of the TLSA data

	Raises

	ValueError – If an unknown TLSA type is passed

	
get_certgrinderd_command(subcommand: List[str]) → List[str]

	Return the certgrinderd command to run.

Adds --log-level with the current self.conf["log-level"].
Also adds –acme-server-url if configured, and –preferred-chain.

	Parameters

	subcommand – The certgrinderd subcommand to run as a list, like [“get”, “ocsp”]

	Returns

	A list of the elements which make up the certgrinderd command

	
get_certificate(csr: Optional[cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest] = None, stdout: Optional[bytes] = None) → bool

	Get a new certificate for self.domainset.

This methods gets a new certificate regardless of the status of any
existing certificate. It is called by self.periodic() as needed.
It can also be called by the get certificate subcommand.

	Parameters

	
	csr – The CSR to use instead of generating one

	stdout – The stdout bytes to use instead of calling self.run_certgrinderd(csr)

	Returns

	False something goes wrong, True if all is well

	
static get_der_pubkey(keypair: Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey]) → bytes

	Return the DER formatted publickey.

	Parameters

	keypair – The keypair which contains the public key

	Returns

	The bytes representing the DER formatted public key

	
get_filename(hostname: str) → str

	Calculate the hostname string to be used for filenames.

Files are named after the ascii idna representation of the first hostname
in the list (which is also the CN in the subject of the CSR and certificate).

Max filename length on some platforms is 255 bytes, but a hostname could be
up to 253 bytes (RFC 1035 section 2.3.4), and we need some room for the usage
and keytype and extension, so we only use the last 230 bytes of the ascii idna
representation of the hostname for the filename, leaving 25 bytes for metadata.

	Parameters

	domainset – The list of hostnames

	Returns

	The string to use in filenames

	
get_ocsp(certificate: Optional[cryptography.x509.base.Certificate] = None, issuers: List[cryptography.x509.base.Certificate] = [], stdout: Optional[bytes] = None) → bool

	The get ocsp subcommand method, called for each domainset by self.grind().

	Parameters

	
	certificate – The certificate to get OCSP response for (optional)

	issuers – The list of issuer(s) of the certificate to get OCSP response for (optional)

	stdout – The mock OCSP response to return instead of calling certgrinderd (optional, used for unit tests)

	Returns

	None

	
grind(args: argparse.Namespace) → None

	Loop over enabled keytypes and domainsets in self.conf["domain-list"] and call args.method for each.

	
load_certificates(path: str) → List[cryptography.x509.base.Certificate]

	Reads PEM certificate data from the path, parses the certificate(s), and returns them in a list.

	Parameters

	path – The path to read the PEM certificate(s) from

	Returns

	A list of cryptography.x509.Certificate objects

	
load_domainset(domainset: List[str], keytype: str) → None

	Prepare paths and create/load private key.

	Parameters

	
	domainset – The list of hostnames to load

	keytype – The keytype to use, “rsa” or “ecdsa”.

	Returns

	None

	
static load_keypair(path: str) → Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey]

	Load keypair bytes from disk, load key and return the object.

Fixes keypair permissions to 640 if they are not 640.

	Parameters

	path – The path to load the keypair from

	Returns

	The keypair object

	
static load_ocsp_response(path: str) → cryptography.hazmat.backends.openssl.ocsp._OCSPResponse

	Reads OCSP response in DER format from the path and returns the object.

	Parameters

	path – The path to read the OCSP response from

	Returns

	The OCSP response object

	
static lookup_tlsa_record(domain: str, port: int, protocol: str, tlsatype: Optional[str] = None, nameserver: str = '') → Optional[List[str]]

	Lookup TLSA records in DNS for the configured domain, port, and protocol.

Loop over any responses and look for the requested tlsatype.
Return a list of results, optionally limited to the specified tlsatype, or None.
Use system resolver unless nameserver is specified.

	Parameters

	
	domain – The service domain name (like mail.example.com)

	port – The service port (like 443)

	protocol – The service protocol (like tcp)

	tlsatype – The TLSA type (like 312)

	nameserver – The DNS server IP to use instead of system resolver (optional)

	Returns

	A list of records or None

	
classmethod output_spki(derkey: bytes) → None

	Get and print the spki pin for the supplied DER public key.

	Parameters

	derkey – The bytes representation of the DER formatted public key

	Returns

	None

	
classmethod output_tlsa_record(derkey: bytes, domain: str, port: int, protocol: str, tlsatype: str, warning: bool = False) → None

	Output the TLSA record for the given DER key, domain, port, protocol and tlsatype.

Call self.generate_tlsa() and output the result formatted as a DNS record

	Parameters

	
	derkey – The bytes representation the public key in DER format

	domain – The service domain name (like mail.example.com)

	port – The service port (like 443)

	protocol – The service protocol (like tcp)

	tlsatype – The TLSA type (like 312)

	warning – Set True to output at level WARNING (default INFO)

	Returns

	None

	
static parse_certgrinderd_ocsp_output(certgrinderd_stdout: bytes) → Optional[cryptography.hazmat.backends.openssl.ocsp._OCSPResponse]

	Parse a DER encoded binary OCSP response as returned by Certgrinderd.

	Parameters

	certgrinderd_output – The bytes representing the OCSP response in DER format

	Returns

	cryptography.hazmat.backends.openssl.ocsp._OCSPResponse

	
static parse_certificate(certificate_bytes: bytes) → Optional[cryptography.x509.base.Certificate]

	Parse a bunch of bytes representing a PEM certificate and return.

	Parameters

	certificate_bytes – The PEM certificate

	Returns

	The parsed cryptography.x509.Certificate object or None

	
parse_certificate_chain(certificate_chain: bytes, csr: cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest) → Optional[List[cryptography.x509.base.Certificate]]

	Split a PEM chain into a list of certificates.

	Parameters

	
	certificate_chain – The bytes representing the PEM formatted certificate chain

	csr – The CSR this certificate was issued from

	Returns

	A list of certificates with the leaf certificate first,
or None if an error happens

	
periodic() → bool

	The periodic method performs periodic maintenance tasks.

This method is called by the ‘periodic’ command, from cron or similar.
It starts out by sleeping for a random period and then checks certificates and renews as needed.

	
run_certgrinderd(stdin: bytes, command: List[str], certgrinderd_stdout: Optional[bytes] = None, certgrinderd_stderr: Optional[bytes] = None) → Optional[bytes]

	Run the configured self.conf["certgrinderd"] command.

The stdin argument will be passed to stdin of the command. A CSR is needed for
the “get certificate” certgrinderd command, and a certificate chain is needed for
the “get ocsp” command.

	Parameters

	
	stdin – bytes representing CSR or cert chain to pass to the certgrinderd command

	command – The certgrinderd command and subcommand to call

	certgrinderd_stdout – Mocked certgrinderd stdout to use instead of calling the command

	certgrinderd_stderr – Mocked certgrinderd stderr to use instead of calling the command

	Returns

	The bytes representing the stdout from the subprocess call

	
static run_post_renew_hook(hook: List[str]) → bool

	Run a specific post renew hook.

	Parameters

	hook – A list of string components of the command and arguments

Returns: True if exit code was 0, False otherwise.

	
run_post_renew_hooks() → bool

	Loops over configured post_renew_hooks and executables in post_renew_hooks_dir and runs them.

	Returns

	None

	
static save_certificate(certificate: cryptography.x509.base.Certificate, path: str, issuers: List[cryptography.x509.base.Certificate] = []) → None

	Save the PEM certificate to the path, optionally with an issuer chain.

	Parameters

	
	certificate – The certificate to save

	path – The path to save the certificate in

	issuer – The list of issuer certificates to write after the certificate (if any)

	Returns

	None

	
classmethod save_concat_certkey(keypair: Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey], certificate: cryptography.x509.base.Certificate, issuers: List[cryptography.x509.base.Certificate], path: str) → None

	Create a single file with the private key, the cert and the issuer(s), in that order.

	Parameters

	
	keypair – The keypair to save in the concat file

	certificate – The certificate to save in the concat file

	issuers – The list of issuer(s) to save in the concat file

	path – The path to save the concat file in

	Returns

	None

	
static save_csr(csr: cryptography.hazmat.backends.openssl.x509._CertificateSigningRequest, path: str) → None

	Save the PEM version of the CSR to the path.

chmods the file 644 after writing.

	Parameters

	
	csr – The CSR to be saved

	path – The path to save the CSR to

	Returns

	None

	
static save_keypair(keypair: Union[cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey], path: str) → None

	Save keypair to disk.

	Parameters

	
	keypair – The keypair to save

	path – The path to save the keypair in

	Returns

	None

	Raises

	ValueError – For unsupported keytypes

	
static save_ocsp_response(ocsp_response: cryptography.hazmat.backends.openssl.ocsp._OCSPResponse, path: str) → None

	Save the OCSP response to disk in DER format.

	Parameters

	
	ocsp_response – The OCSP response to save

	path – The path to save in

	Returns

	None

	
show_certificate() → None

	The show certificate subcommand method, called for each domainset by self.grind().

	Returns

	None

	
show_ocsp() → None

	The show ocsp subcommand method, called for each domainset by self.grind().

	Returns

	None

	
show_paths() → None

	The show paths subcommand method, called for each domainset by self.grind().

	Returns

	None

	
show_spki() → None

	The show spki subcommand method, called for each domainset by self.grind().

Call self.output_spki() with the DER formatted public key and output the result.

	Returns

	None

	
show_tlsa() → None

	The ‘show tlsa’ subcommand method, called for each domainset by self.grind().

	Returns

	None

	
static split_pem_chain(pem_chain_bytes: bytes) → List[bytes]

	Split a PEM chain into a list of bytes of the individual PEM certificates.

	Parameters

	pem_chain_bytes – The bytes representing the PEM chain

	Returns

	A list of 0 or more bytes chunks representing each certificate

	
classmethod verify_tlsa_record(derkey: bytes, domain: str, port: int, protocol: str, tlsatype: str, nameserver: str = '') → bool

	Check the TLSA records for the port/protocol/domain and DER key in the DNS.

Output the info needed to fix things when missing records are found.

	Parameters

	
	derkey – The bytes representation the public key in DER format

	domain – The service domain name (like mail.example.com)

	port – The service port (like 443)

	protocol – The service protocol (like tcp)

	tlsatype – The TLSA type (like 312)

	nameserver – The DNS server IP to use instead of system resolver (optional)

	Returns

	True if all is well, False if one or more problems are found

Certgrinderd Change Log

This is the changelog for certgrinderd. The latest version of this file
can always be found on
Github [https://github.com/tykling/certgrinder/blob/master/docs/certgrinderd-changelog.rst]

All notable changes to certgrinderd will be documented in this file.

This project adheres to Semantic Versioning [http://semver.org/].

v0.18.0 (unreleased)

	No changes

v0.17.2 (27-nov-2021)

Changed

	Include Python 3.10 support

	Update setup.py to include license_file

	Update description in setup.py

v0.17.1 (21-nov-2021)

Changed

	Update dependency PyYAML==5.4.1 to PyYAML==6.0

	Update dependency certbot==1.15.0 to certbot==1.21.0

	Update dependency requests==2.25.1 to requests==2.26.0

	Update a bunch of development dependencies

	Switch to Github Actions instead of Travis CI

v0.17.0 (21-may-2021)

	No changes since v0.17.0-rc3

v0.17.0-rc3 (21-may-2021)

Fixed

	Replace underscores with spaces in the preferred-chain name

	Do not check number of intermediates when getting OCSP.

v0.17.0-rc2 (20-may-2021)

Fixed

	Replace spaces with underscores in chain names to get around quoting woes in the SSH commands

v0.17.0-rc1 (20-may-2021)

Added

	New config and command-line option preferred-chain can be used to ask the ACME server (LetsEncrypt) to sign with the specified chain. This is used by the certgrinder clients alternate-chain option to ask for primary or alternate chain for staging or prod. The value of the option is passed directly to Certbot as --preferred-chain.

Changed

	Refactor a bunch of code to support the new two-intermediates chain from LetsEncrypt

	Upgrade dependencies

v0.16.0 (18-Jan-2021)

Added

	Certgrinderd now keeps a pidfile while running to prevent running multiple times simultaneously.

	New ping command used by the certgrinder command check connection to check connection to the certgrinderd server without doing anything else.

	Python3.9 support

Fixed

	IDN domain handling now works again

v0.15.1 (29-Sep-2020)

	No changes

v0.15.0 (29-Sep-2020)

	No changes

v0.15.0-beta2 (28-Sep-2020)

	No changes

v0.15.0-beta1 (28-Sep-2020)

Added

	Enabled check-spelling Github action and fixed a bunch of misspelled words all over.

Fixed

	Removed unused --rsa-key-size arg from certbot command

	Fix wrong requirements line for pre-commit (remove extra equal sign)

	Updated all dependencies in requirements.txt, and switch to pinning deps with == rather than >= so dependabot on github can do its thing

v0.14.2 (13-Sep-2020)

	No changes

v0.14.1 (13-Sep-2020)

Changed

	Change intermediate to issuer in the code and tests.

Fixed

	Fix a wrong error message in an assert in test_parse_certificate_chain_path()

v0.14.0 (29-Aug-2020)

Changed

	Change log message to INFO when getting a new OCSP response

v0.14.0-beta2 (29-Aug-2020)

	No changes

v0.14.0-beta1 (29-Aug-2020)

Added

	Introduce commands and subcommands (like “get certificate” or “get ocsp”)

	Add OCSP response fetching and verifying functionality

	Add requests to requirements (for getting OCSP responses)

	Tests for the new functionality

Changed

	Refactor code to fit the commands/subcommand structure

	Log certbot stderr at level ERROR

	Change some default config from None to “” to keep it as str

v0.13.2 (11-Jul-2020)

Added

	Manpage to MANIFEST.in to include it in the distribution

v0.13.1 (7-Jul-2020)

Changed

	Specify python3.7 and 3.8 as classifiers in setup.py

v0.13.0 (7-Jul-2020)

	No changes

v0.13.0-rc1 (1-Jul-2020)

Added

	Information about $SSH_ORIGINAL_COMMAND to docs

Changed

	Show current log-level setting in first log message

v0.13.0-beta2 (29-Jun-2020)

Added

	Dev requirements now has sphinx-rtd-theme which is the theme used on ReadTheDocs, so make html in docs/ now produces the same-ish output.

	Dev requirements now include sphinx-argparse used for generating automatic usage documentation.

	Short command-line options for a bunch of things.

	Manpage certgrinderd.8

	Unittests for a few Certgrinderd() methods

Changed

	Move CHANGELOG.md to rst format and into docs/

	Split certbot-command related stuff into new methods get_certbot_command() and run_certbot()

	Split creating the argparse object into a separate function to assist sphinx-argparse

	Test suite now covers 100% of certgrinderd.py

Fixed

	Only try challenge types if we have the needed info (acme-zone for DNS-01, www-root for HTTP-01)

v0.13.0-beta1 (7-May-2020)

	No changes

v0.13.0-alpha8 (6-May-2020)

Changed

	Changed logformat to prefix messages with certgrinderd: and
Certgrinderd. instead of nothing and %(name)s, making it more clear
which messages are from certgrinder and which are from certgrinderd.

v0.13.0-alpha7 (6-May-2020)

	No changes

v0.13.0-alpha6 (6-May-2020)

Changed

	certgrinderd now creates a temporary directory for temporary CSR
and CRT files per run. The directory and contents is at the end of
each run. If –temp-dir is configured the temporary directory is
created inside the path specified.

v0.13.0-alpha5 (6-May-2020)

Added

	-f and -S short options for –config-file and –staging

	MANIFEST.in file to include sample config and hook scripts

v0.13.0-alpha4 (5-May-2020)

Added

	New –log-level option to set logging verbosity. Must be one of
DEBUG, INFO, WARNING, ERROR, CRITICAL, corresponding to the levels in
the Python logging framework.

	A lot of new documentation about certgrinderd

	Command-line options for everything

Changed

	Configuration file and command-line options aligned so everything is
configurable both places.

v0.13.0-alpha3 (5-May-2020)

Added

	Add missing PyYAML dependency in setup.py

Changed

	Fix so certgrinderd.conf certbot_commands with spaces in them work
as expected

v0.13.0-alpha2 (4-May-2020)

Added

	Install certgrinderd binary using entry_points in setup.py

Changed

	Move CSR loading and testing to class methods in the Certgrinderd
class

	Wrap remaining script initialisation in a main() function to support
entry_points in setup.py better

v0.13.0-alpha (4-May-2020)

Added

	Create Python package certgrinderd for the Certgrinder server,
publish on pypi

	Add isort to pre-commit so imports are kept neat

	Tox and pytest and basic testsuite using Pebble as a mock ACME server

	Travis and codecov.io integration

Changed

	Move client files into client/ and server files into server/, each
with their own CHANGELOG.md

	Rename server from csrgrinder to certgrinderd

	Rewrite server in Python

Certgrinder Change Log

This is the changelog for certgrinder. The latest version of this file
can always be found on
Github [https://github.com/tykling/certgrinder/blob/master/docs/certgrinder-changelog.rst]

All notable changes to certgrinder will be documented in this file.

This project adheres to Semantic Versioning [http://semver.org/].

v0.18.0 (unreleased)

	No changes

v0.17.2 (27-nov-2021)

Changed

	Include Python 3.10 support

	Update setup.py to include license_file

	Update description in setup.py

v0.17.1 (21-nov-2021)

Changed

	Update dependency PyYAML==5.4.1 to PyYAML==6.0

	Cryptography 35.0.0 is incompatible with Certgrinder v0.17.x so the Cryptography dependency has been pinned to a version lower than <35 in setup.py. Next version of Certgrinder will support cryptography v35.0.0 and newer.

	Update a bunch of development dependencies

	Switch to Github Actions instead of Travis CI

v0.17.0 (21-may-2021)

	No changes since v0.17.0-rc3

v0.17.0-rc3 (21-may-2021)

	No changes since v0.17.0-rc2

v0.17.0-rc2 (20-may-2021)

Fixed

	Replace spaces with underscores in chain names to get around quoting woes in the SSH commands

v0.17.0-rc1 (20-may-2021)

Added

	New config option alternate-chain to tell certgrinderd to tell Certbot to tell LetsEncrypt to use the alternate chain. Sets the certgrinderd option preferred-chain to the appropriate value accordingly.

Fixed

	Support the new longer chain from LetsEncrypt (with two intermediates).

	Use shlex to parse certgrinderd command instead of just splitting on spaces

Changed

	Refactor a bunch of code to deal with multiple intermediates

	Upgrade dependencies

v0.16.0 (18-Jan-2021)

Added

	New config option ocsp-renew-threshold-percent to specify the amount of time in percent which must have passed before an OCSP response is considered too old. The new option defaults to 50% which matches when LetsEncrypt currently issues new OCSP responses, which is after half the time between produced_at and next_update has passed.

	Certgrinder now keeps a pidfile while running to prevent running multiple times simultaneously.

	New check connection command to check connection to the certgrinderd server without doing anything else.

	New config options post-renew-hooks-dir and post-renew-hooks-dir-runner. The former can be used to specify a path to a directory containing executables to run after a certificate or OCSP response has been renewed. The latter can be used to specify a runner like sudo to be used to run all the hooks. The existing post-renew-hooks setting will continue to work as expected.

	Python3.9 support

Removed

	Config option ocsp-renew-threshold-seconds was removed and replaced with ocsp-renew-threshold-percent.

Fixed

	Show keytype in show ocsp output

	The new ocsp-renew-threshold-percent code and default setting eliminates redundant OCSP response fetching

	IDN domain handling now works again

Changed

	Better logging when running post renew hooks - exit code is always logged, and the time spent running each hook is now logged.

v0.15.1 (29-Sep-2020)

Fixed

	Check OCSP response age and get a new one when needed

Added

	Configuration option ocsp-renew-threshold-seconds - defaults to 86400.

v0.15.0 (29-Sep-2020)

Changed

	Change output a bit for the show tlsa subcommand

Fixed

	The show tlsa command did not work due to type mismatch triggering an assert

	Show keytype in the show certificate output

v0.15.0-beta2 (28-Sep-2020)

Changed

	Check if files exist in the show paths subcommand.

v0.15.0-beta1 (28-Sep-2020)

Added

	Enabled ECDSA keys and certificates. Default to getting both RSA and ECDSA certificates. Control which keytypes are enabled with the new key-type-list configuration option. Curve for ECDSA is SECP384R1, this might be made configurable later.

	Added show paths subcommand to output the various filepaths used.

	Enabled check-spelling Github action and fixed a bunch of misspelled words all over.

Changed

	Changed filenames of keys and certificates. Run the following commands to rename existing RSA files from pre 0.15 installs:

	The keypair: mv example.com.key example.com-keypair.rsa.key

	The CSR: mv example.com.csr example.com-request.rsa.csr

	The certificate chain: mv example.com.crt example.com-chain.rsa.crt

	The certificate: mv example.com-certonly.crt example.com-certificate.rsa.crt

	The concat key and chain: mv example.com-concat.pem example.com-concat.rsa.pem

	The issuer certificate: mv example.com-issuer.crt example.com-issuer.rsa.crt

	The OCSP response: mv example.com.ocsp example.com-response.rsa.ocsp

In other words:
- All files got the keytype (always rsa for pre-0.15 files) inserted just before the extension, so .crt becomes .rsa.crt and .key becomes .rsa.key.
- Additionally the keypair files got -keypair inserted just after the hostname, so example.com.rsa.key becomes example.com-keypair.rsa.key.
- Additionally the CSR files got -request inserted just after the hostname, so example.com.rsa.csr becomes example.com-request.rsa.csr.
- Finally the OCSP response got -response inserted just after the hostname, so example.com.rsa.ocsp becomes example.com-response.rsa.ocsp.

This rename must be done for each domainset. If a keypair with the old filename is found Certgrinder will quit with exit code 1 and refuse to run. Use the new show paths subcommand to figure out what the new filenames should be.

	Prefix certgrinderd output with certgrinderd: when not in debug mode.

	Updated all dependencies in requirements.txt, and switch to pinning deps with == rather than >= so dependabot on github can do its thing

Fixed

	Fix wrong requirements line for pre-commit (remove extra equal sign)

v0.14.2 (13-Sep-2020)

Added

	Make show certificate output certificate not_valid_before and not_valid_after

Changed

	Rename test test_show_certificate() to test_show_certificate_file_not_found()

v0.14.1 (13-Sep-2020)

Added

	Workaround to get certificate from chain in installations from before foo-certonly.crt was written separately. This makes the “get ocsp” subcommand work even if the current certificate was issued with an older version of certgrinder.

Changed

	Rename parse_certgrinderd_certificate_output() to parse_certificate_chain() and clean it up a bit

	Update some log messages and update tests to match

	Change “intermediate” to “issuer” in the code and tests.

	Rename intermediate cert path to example.com-issuer.crt instead of example.com-intermediate.crt. Existing intermediate/issuer certs will be renamed next time “get ocsp” is run, which is done automatically by the “periodic” command.

v0.14.0 (29-Aug-2020)

Changed

	Update log message when running post-renew hooks

v0.14.0-beta2 (29-Aug-2020)

Added

	Workaround to get intermediate from chain in installations from before foo-intermediate.crt was written separately. This makes the “get ocsp” subcommand work even if the current certificate was issued with an older version of certgrinder.

Changed

	Separated the PEM chain splitting logic into a new split_pem_chain method

v0.14.0-beta1 (29-Aug-2020)

Added

	OCSP response support

	Log certgrinderd output at the level certgrinderd logs it at, when possible (otherwise log at WARNING)

	Tests for the new functionality

Changed

	Support the new certgrinderd commands and subcommands

	Change short command for –config-file from -f to -c

	Set default certgrinder command to “certgrinderd”

	Use with for opening files a few places to avoid leaving open fds

Fixed

	Changed certgrinder syslog ident from “certgrinderd” to “certgrinder”

v0.13.2 (11-Jul-2020)

Added

	Manpage to MANIFEST.in to include it in the distribution

v0.13.1 (7-Jul-2020)

Changed

	Specify python3.7 and 3.8 as classifiers in setup.py

v0.13.0 (7-Jul-2020)

Changed

	Test suite now covers 100% of certgrinder.py

Fixed

	Fix broken test client/certgrinder/tests/test_certgrinder.py::test_check_certificate_not_cert

	Fix broken show_certificate() method, and make it output more useful info

v0.13.0-rc1 (1-Jul-2020)

Changed

	Writing the certificate only (without the intermediate) to example.com-certonly.crt is new in 0.13, so make the check_certificate() method checks the chain certificate to make sure upgrading 0.12 to 0.13 doesn’t trigger needlessly renewing all existing certs.

v0.13.0-beta2 (29-Jun-2020)

Added

	Dev requirements now has sphinx-rtd-theme which is the theme used on ReadTheDocs, so make html in docs/ now produces the same-ish output.

	Dev requirements now include sphinx-argparse used for generating automatic usage documentation.

	Very preliminary support for EC keys in addition to RSA keys.

	More tests

	Better validation of returned certificate and intermediate

	Save intermediate in separate file, save certificate only in separate file.

	Documentation for all config settings

	Manpage certgrinder.8

	periodic command to run from cron

Changed

	Move CHANGELOG.md to rst format and into docs/

	Rework command-line options, add commands, rework configuration and configfile. This is a backwards incompatible change. Run /venv/bin/certgrinder periodic from cron, certgrinder help for more info.

	Configuration is now a combination of command-line options (if any), config file (if any) and default config; in decreasing precedence order. A default setting will be overridden by a config file setting which will be overridden by a command-line setting.

	Update certgrinder.conf.dist with new options and better comments

	Mark most methods as @staticmethod or @classmethod, refactor code as needed. This makes the code more reusable and easier to test.

	Split certificate validity tests into separate methods

	Split parsing of certgrinderd output into separate method parse_certgrinderd_output()

	Split argparse stuff (which grew considerably with this change) into separate get_parser() func

	Support calling certgrinder.main() function and certgrinder.Certgrinder.grind() method with a list of mocked command-line args

	Update existing tests to deal with all the new stuff

	Make pytest logformat look like regular logging

	Split creating the argparse object into a separate function to assist sphinx-argparse

	Reorder argparse commands and subcommands in alphabetical order

	Re-add -v / –version to show version and exit

	Test suite now covers 100% of certgrinder.py

v0.13.0-beta1 (7-May-2020)

Fixed

	Made -q / –quiet mode work

	Made certgrinder always pass --log-level LEVEL to certgrinderd,
so the effects of both --quiet and --debug are passed to the
certgrinderd call.

v0.13.0-alpha8 (6-May-2020)

Changed

	Changed logformat to prefix messages with certgrinder: and
Certgrinder. instead of nothing and %(name)s, making it more clear
which messages are from certgrinder and which are from certgrinderd

	Output logging from certgrinderd call

v0.13.0-alpha7 (6-May-2020)

Fixed

	Old bug where permissions of private key would be fixed to 640 even
if it was already 640

	–log-level didn’t work without –debug

v0.13.0-alpha6 (6-May-2020)

	No changes

v0.13.0-alpha5 (6-May-2020)

Added

	MANIFEST.in file to include certgrinder.conf.dist in installs

Changed

	Default config file is now ~/certgrinder.conf instead of
~/certgrinder.yml

v0.13.0-alpha4 (5-May-2020)

Added

	There is now a –log-level=LEVEL command line argument to set
loglevel more flexibly. It can be set to one of DEBUG, INFO, WARNING,
ERROR, or CRITICAL.

Changed

	Config file path should be given with the -f flag

	Pass –staging and –debug flag to certgrinderd when given to
certgrinder

	Prefix syslog messages with “certgrinder” instead of “Certgrinder” to
match the package name

v0.13.0-alpha3 (5-May-2020)

	No changes

v0.13.0-alpha2 (4-May-2020)

Added

	Install certgrinder binary using entry_points in setup.py

Changed

	Wrap script initialisation in a main() function to support
entry_points in setup.py better

v0.13.0-alpha (4-May-2020)

Added

	Create Python package certgrinder for the Certgrinder client,
publish on pypi

	Add isort to pre-commit so imports are kept neat

	Tox and pytest and basic testsuite using Pebble as a mock ACME server

	Travis and codecov.io integration

	Add -C argument which simply checks if the certificates are present
and valid and have more than 30 days validity left. Exit code 0 if
all is well or exit code 1 if one or more certificates needs
attention.

Changed

	Move client files into client/ and server files into server/, each
with their own CHANGELOG.md, in preparation for Python packaging.

	Reorder commandline arguments alphabetically.

	Change a few imports to make mypy and isort happy

v0.12.1 (4-Jan-2020)

Added

	Add RELEASE.md so I don’t forget how to do this

Fixed

	Fixed release date for v0.12.0 in CHANGELOG.md

	Add a few type: ignore for some of the cryptography imports and calls
to make newer mypy happy

Changed

	Update mypy to 0.761 and add to requirements-dev.txt

v0.12.0 (4-Jan-2020)

Changed

	Support python3 instead of (NOT in addition to) python2

	Format code with Black

	Check code with flake8

	Add type annotations and check code with mypy –strict

Fixed

	pyyaml load deprecation warning: ./certgrinder.py:54:
YAMLLoadWarning: calling yaml.load() without Loader=… is
deprecated, as the default Loader is unsafe. Please read
https://msg.pyyaml.org/load for full details.

v0.11.0 (25-Dec-2018)

Added:

	Support for setting SSH user: in certgrinder.yml config file.

Changed:

	Remove OpenSSL dependency for key and X509 operations, use
cryptography directly instead. This affects any method which deals
with keys and/or X509.

	Do not use shell=True for the subprocess.pOpen SSH call.

Removed:

	Support for selfsigned certificates.

v0.10.2 (5-Apr-2018)

Added:

	Support setting syslog_facility and syslog_socket in
certgrinder.yml (defaults to “user” and “/var/run/log” to maintain
backwards compat)

	Warn in the last line when one or more selfsigned certificates has
been created

	Show a counter with the number of domainsets being processed

Fixed:

	Typo in variable name in logoutput

	Only log SSH output and exception info when in debug mode

	Various improvements to logging

v0.10.1 (2-Mar-2018)

Fixed:

	Version number was wrong in certgrinder.py

v0.10.0 (2-Mar-2018)

Added:

	Move from webroot to manual Certbot authenticator, using hook scripts
manual-auth-hook and manual-cleanup hook

	Add DNS-01 support in hook scripts. DNS-01 is now the recommended
challenge type.

	csrgrinder got a config file

	Describe new features in README

	Many improvements to logging and error handling

Fixed:

	Language and typos and layout in README

v0.9.5 (16-Feb-2018)

Fixed:

	v0.9.4 had the wrong version number in the .py file.

Added:

	-p / –showspki switch to output pin-sha256 pins for the public keys.
Useful for HPKP or other pinning that uses the same format.

v0.9.4 (17-Jan-2018)

Fixed:

	The showtlsa (-s) and checktlsa (-c) features did not work for
multiple domain sets

v0.9.3 (17-Jan-2018)

Fixed:

	Custom nameserver functionality was not working due to an error

	Catch more types of exceptions when looking up DNS results, and exit
if a serious error occurs.

v0.9.2 (17-Jan-2018)

Fixed:

	Typo in CHANGELOG.md

v0.9.1 (17-Jan-2018)

Fixed:

	Logic for using a custom nameserver with -n / –nameserver was
inverted.

	Add example directory structure to README.md

Added:

	Show version number in usage and add -v / –version switch to show
it.

	Add shebang line to certgrinder.py and make the script executable.

v0.9.0 (16-Jan-2018)

Added:

	This changelog. First numbered release.

Index

 _
 | C
 | G
 | L
 | O
 | P
 | R
 | S
 | V

_

 	
 	__init__() (certgrinder.Certgrinder method)

 	(certgrinderd.Certgrinderd method)

C

 	
 	Certgrinder (class in certgrinder)

 	Certgrinderd (class in certgrinderd)

 	check_certificate() (certgrinder.Certgrinder method)

 	check_certificate_expiry() (certgrinder.Certgrinder static method)

 	check_certificate_issuer() (certgrinder.Certgrinder static method)

 	check_certificate_public_key() (certgrinder.Certgrinder static method)

 	check_certificate_san_names() (certgrinder.Certgrinder static method)

 	check_certificate_subject() (certgrinder.Certgrinder static method)

 	check_certificate_validity() (certgrinder.Certgrinder class method)

 	
 	check_connection() (certgrinder.Certgrinder method)

 	check_csr() (certgrinderd.Certgrinderd static method)

 	check_ocsp() (certgrinder.Certgrinder method)

 	check_ocsp_response() (certgrinderd.Certgrinderd class method)

 	check_ocsp_response_issuer() (certgrinderd.Certgrinderd static method)

 	check_ocsp_response_signature() (certgrinderd.Certgrinderd class method)

 	check_ocsp_response_timing() (certgrinderd.Certgrinderd static method)

 	check_tlsa() (certgrinder.Certgrinder method)

 	configure() (certgrinder.Certgrinder method)

 	create_ocsp_request() (certgrinderd.Certgrinderd class method)

G

 	
 	generate_csr() (certgrinder.Certgrinder static method)

 	generate_private_key() (certgrinder.Certgrinder static method)

 	generate_spki() (certgrinder.Certgrinder static method)

 	generate_tlsa_record() (certgrinder.Certgrinder static method)

 	get_certbot_command() (certgrinderd.Certgrinderd method)

 	get_certgrinderd_command() (certgrinder.Certgrinder method)

 	get_certificate() (certgrinder.Certgrinder method)

 	(certgrinderd.Certgrinderd method)

 	
 	get_certificate_command() (certgrinderd.Certgrinderd method)

 	get_der_pubkey() (certgrinder.Certgrinder static method)

 	get_filename() (certgrinder.Certgrinder method)

 	get_ocsp() (certgrinder.Certgrinder method)

 	get_ocsp_command() (certgrinderd.Certgrinderd method)

 	get_ocsp_response() (certgrinderd.Certgrinderd method)

 	grind() (certgrinder.Certgrinder method)

L

 	
 	load_certificates() (certgrinder.Certgrinder method)

 	load_domainset() (certgrinder.Certgrinder method)

 	
 	load_keypair() (certgrinder.Certgrinder static method)

 	load_ocsp_response() (certgrinder.Certgrinder static method)

 	lookup_tlsa_record() (certgrinder.Certgrinder static method)

O

 	
 	output_spki() (certgrinder.Certgrinder class method)

 	
 	output_tlsa_record() (certgrinder.Certgrinder class method)

P

 	
 	parse_certgrinderd_ocsp_output() (certgrinder.Certgrinder static method)

 	parse_certificate() (certgrinder.Certgrinder static method)

 	(certgrinderd.Certgrinderd class method)

 	parse_certificate_chain() (certgrinder.Certgrinder method)

 	(certgrinderd.Certgrinderd class method)

 	
 	parse_csr() (certgrinderd.Certgrinderd static method)

 	periodic() (certgrinder.Certgrinder method)

 	ping_command() (certgrinderd.Certgrinderd static method)

 	process_csr() (certgrinderd.Certgrinderd method)

R

 	
 	run_certbot() (certgrinderd.Certgrinderd method)

 	run_certgrinderd() (certgrinder.Certgrinder method)

 	
 	run_post_renew_hook() (certgrinder.Certgrinder static method)

 	run_post_renew_hooks() (certgrinder.Certgrinder method)

S

 	
 	save_certificate() (certgrinder.Certgrinder static method)

 	save_concat_certkey() (certgrinder.Certgrinder class method)

 	save_csr() (certgrinder.Certgrinder static method)

 	(certgrinderd.Certgrinderd static method)

 	save_keypair() (certgrinder.Certgrinder static method)

 	save_ocsp_response() (certgrinder.Certgrinder static method)

 	
 	show_certificate() (certgrinder.Certgrinder method)

 	show_ocsp() (certgrinder.Certgrinder method)

 	show_paths() (certgrinder.Certgrinder method)

 	show_spki() (certgrinder.Certgrinder method)

 	show_tlsa() (certgrinder.Certgrinder method)

 	split_pem_chain() (certgrinder.Certgrinder static method)

 	(certgrinderd.Certgrinderd static method)

V

 	
 	verify_signature() (certgrinderd.Certgrinderd static method)

 	
 	verify_tlsa_record() (certgrinder.Certgrinder class method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Certgrinder 0.18.0-dev Documentation!

 		
 Introduction

 		
 Advantages

 		
 Terminology

 		
 Challenges

 		
 DNS-01

 		
 HTTP-01

 		
 Certgrinderd

 		
 Install Certgrinder Server

 		
 Create User

 		
 Install certgrinderd

 		
 Configuration

 		
 Restricting Client Hostnames

 		
 Configure SSH Access

 		
 Auth and Cleanup Hooks

 		
 Testing

 		
 Command Line Usage

 		
 Positional Arguments

 		
 Named Arguments

 		
 Sub-commands:

 		
 Class Methods

 		
 Certgrinder

 		
 Installation

 		
 Install certgrinder

 		
 Create Certgrinder User

 		
 Configuration

 		
 ACME Challenges

 		
 Testing

 		
 Crontab job

 		
 Client Commands

 		
 check commands

 		
 get commands

 		
 help command

 		
 periodic command

 		
 show commands

 		
 version command

 		
 Command Line Usage

 		
 Positional Arguments

 		
 Named Arguments

 		
 Sub-commands:

 		
 Class Methods

 		
 Certgrinderd Change Log

 		
 v0.18.0 (unreleased)

 		
 v0.17.2 (27-nov-2021)

 		
 Changed

 		
 v0.17.1 (21-nov-2021)

 		
 Changed

 		
 v0.17.0 (21-may-2021)

 		
 v0.17.0-rc3 (21-may-2021)

 		
 Fixed

 		
 v0.17.0-rc2 (20-may-2021)

 		
 Fixed

 		
 v0.17.0-rc1 (20-may-2021)

 		
 Added

 		
 Changed

 		
 v0.16.0 (18-Jan-2021)

 		
 Added

 		
 Fixed

 		
 v0.15.1 (29-Sep-2020)

 		
 v0.15.0 (29-Sep-2020)

 		
 v0.15.0-beta2 (28-Sep-2020)

 		
 v0.15.0-beta1 (28-Sep-2020)

 		
 Added

 		
 Fixed

 		
 v0.14.2 (13-Sep-2020)

 		
 v0.14.1 (13-Sep-2020)

 		
 Changed

 		
 Fixed

 		
 v0.14.0 (29-Aug-2020)

 		
 Changed

 		
 v0.14.0-beta2 (29-Aug-2020)

 		
 v0.14.0-beta1 (29-Aug-2020)

 		
 Added

 		
 Changed

 		
 v0.13.2 (11-Jul-2020)

 		
 Added

 		
 v0.13.1 (7-Jul-2020)

 		
 Changed

 		
 v0.13.0 (7-Jul-2020)

 		
 v0.13.0-rc1 (1-Jul-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-beta2 (29-Jun-2020)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.13.0-beta1 (7-May-2020)

 		
 v0.13.0-alpha8 (6-May-2020)

 		
 Changed

 		
 v0.13.0-alpha7 (6-May-2020)

 		
 v0.13.0-alpha6 (6-May-2020)

 		
 Changed

 		
 v0.13.0-alpha5 (6-May-2020)

 		
 Added

 		
 v0.13.0-alpha4 (5-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha3 (5-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha2 (4-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha (4-May-2020)

 		
 Added

 		
 Changed

 		
 Certgrinder Change Log

 		
 v0.18.0 (unreleased)

 		
 v0.17.2 (27-nov-2021)

 		
 Changed

 		
 v0.17.1 (21-nov-2021)

 		
 Changed

 		
 v0.17.0 (21-may-2021)

 		
 v0.17.0-rc3 (21-may-2021)

 		
 v0.17.0-rc2 (20-may-2021)

 		
 Fixed

 		
 v0.17.0-rc1 (20-may-2021)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 v0.16.0 (18-Jan-2021)

 		
 Added

 		
 Removed

 		
 Fixed

 		
 Changed

 		
 v0.15.1 (29-Sep-2020)

 		
 Fixed

 		
 Added

 		
 v0.15.0 (29-Sep-2020)

 		
 Changed

 		
 Fixed

 		
 v0.15.0-beta2 (28-Sep-2020)

 		
 Changed

 		
 v0.15.0-beta1 (28-Sep-2020)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.14.2 (13-Sep-2020)

 		
 Added

 		
 Changed

 		
 v0.14.1 (13-Sep-2020)

 		
 Added

 		
 Changed

 		
 v0.14.0 (29-Aug-2020)

 		
 Changed

 		
 v0.14.0-beta2 (29-Aug-2020)

 		
 Added

 		
 Changed

 		
 v0.14.0-beta1 (29-Aug-2020)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.13.2 (11-Jul-2020)

 		
 Added

 		
 v0.13.1 (7-Jul-2020)

 		
 Changed

 		
 v0.13.0 (7-Jul-2020)

 		
 Changed

 		
 Fixed

 		
 v0.13.0-rc1 (1-Jul-2020)

 		
 Changed

 		
 v0.13.0-beta2 (29-Jun-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-beta1 (7-May-2020)

 		
 Fixed

 		
 v0.13.0-alpha8 (6-May-2020)

 		
 Changed

 		
 v0.13.0-alpha7 (6-May-2020)

 		
 Fixed

 		
 v0.13.0-alpha6 (6-May-2020)

 		
 v0.13.0-alpha5 (6-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha4 (5-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha3 (5-May-2020)

 		
 v0.13.0-alpha2 (4-May-2020)

 		
 Added

 		
 Changed

 		
 v0.13.0-alpha (4-May-2020)

 		
 Added

 		
 Changed

 		
 v0.12.1 (4-Jan-2020)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 v0.12.0 (4-Jan-2020)

 		
 Changed

 		
 Fixed

 		
 v0.11.0 (25-Dec-2018)

 		
 Added:

 		
 Changed:

 		
 Removed:

 		
 v0.10.2 (5-Apr-2018)

 		
 Added:

 		
 Fixed:

 		
 v0.10.1 (2-Mar-2018)

 		
 Fixed:

 		
 v0.10.0 (2-Mar-2018)

 		
 Added:

 		
 Fixed:

 		
 v0.9.5 (16-Feb-2018)

 		
 Fixed:

 		
 Added:

 		
 v0.9.4 (17-Jan-2018)

 		
 Fixed:

 		
 v0.9.3 (17-Jan-2018)

 		
 Fixed:

 		
 v0.9.2 (17-Jan-2018)

 		
 Fixed:

 		
 v0.9.1 (17-Jan-2018)

 		
 Fixed:

 		
 Added:

 		
 v0.9.0 (16-Jan-2018)

 		
 Added:

_static/plus.png

_static/file.png

_static/minus.png

